In this assignment you’re going to profile the California Housing dataset and analyze the individual columns to discover which ones may need additional processing before we can start training a machine learning model.
We are going to analyze each column, calculate value distributions, and identify any heavily-skewed columns that may need additional processing.
...
wC9t5YyoBMyRcP5q+d+EbKoy1FJbik28uBV7sDU4oMRhKZXv/ENxb9Fa/zKvenzvHb+2EoB0u6bJEX1PMq2oRGEa9FIDsaJaI/UWDndDB7jp4fkjZHSLFr6i379gx2a9lgZHM4MppPU8+y0ULj/l0iYGgZ96HdEjN2txuS2DAt5PRKRB/P8rIpM5WsBBwemt6XklVmmqeWChEFg3gsUQvlNbk6i4wAZve6jPLOOp3OKadQIQgEvSw1caqKh+YRkl2P9t+XVIkOaNbkOkSx2Q7Qz0qUa0Kn1o8SowCHS27FD0IHnsBLCRKTiXukUrwuq/Pa77mkgpWjBXcXvPg+9b6+TzOnoRtlkcuTfLu7HPr411lJ04OPDQaeVJaIrkpeKoHmvgYr9QGHCxAqQ9GKi+wcYsbifT1E9PG5M5yQ3IH4pUIETtMNxp5/WmS2WEv8hphqFhDOENn0GYvva2ZcxItM9g8ZeNWULFbqKIGJ0qY3W72OArF+XhxC/PCPgrRAMWLL25NJIeGfgFG3ICYkp2D97LevVMIfOqnsT6xQaq4kDMzq5QgRO9k3XzpmbAdTi28WJKkxWLHcoygl7MKqbTYWc5wZ9Fkrssx2Ofar0G5R3RScNrIVcsHzznGXM9JJm1+Pztv9uUvkRlNRPmDNZW8N6MfR+nxnJw8zWORicIlEbM+YRr259WEGUZpuN9rdU5cx5w/cd+wkU6WKaJ9JFiWXz/hl4mV8TdL+RMKh8yHl3v//8BjfsF1xs5XeAWlPknEq1HJj95QM/vKGnxuf5FkcDNmZZjkKbVyy/+x08AEKaI8twH/jG+c2RvJsrH9Aadn489ZH0gND4WCuPuTbleYBO6YgoMWEJlkBP8Gu+zTvVvwRM5hPHkPzPfJQYBoDLS7arGwTAZZiH8Vg55dUQIRkwWD4Ntexel4/lftL8vvq9yMP55ENVdShUL4ukJSBjVG927nlB12VITuIH48E3nrrVusegSv5KrG0kgMWRFdae0OpXICvvMJWQyaPSVT4xZ0FoMFBIX/xNsZjaxDF/NHC2Qad8eTSnXci+Xv8ZM9heDgXSaLbN8uXbSXd/x6Lwl63HPSOYH2H12PsOfOyx4HvXBr4Eaj8liL/chNat2j01HESrYZet9AS30ChaTiFLh/NEV1kTTYsBy2FBccfNjF+wJdW1WI7h7jGfqPNbxXDpwbCmtdN9K/hXC3RVPzf8ydYm0Dyq70OFImaxBlDVMNlW06f91sKAjo+qfPejFcLynadQ/XiF7QmcBPaBneC0Z7cz+K3UZKca0Fg5umlmW4lRCosQ9lpY/XnnVW4NHqzM9eSaACCf8K661dDO/3HtV0Fer2xPoLK71DvriN/D2vQnl9c5T0npDGju80t2Ep1U9zJxidIMpsp3hs6TsvYhrvTaS4/pU5j00wdn1ZvZYDYdDhGPavnIJtQR5xOkCbsNiKXmIXqvzTWVZXQdVkeSjMNLnayrI6jOIODk6l8vldUTDs1JX9SAT1dAWjVJog5WRSMRglJdK+uuwVGSP/eJPGo1Qn9/seFLZp6K32m6WN2f5U1iLZeimJzjHaEOsH1duW1Tbfd9751/noxE7PYA5aXm7v0HPRDzpfX8xcXVeJKhXDSjYDFSWPRwCVuPAWsj7Sl/Tq2Nqu594i08B8F6ye4iKPf6f5v/pzdToNAvGBL9qX8zfUPJ3/9gwcCMaVRsAElBCDJzB8hNXPiCaAdvVP9XILg8tqlNPJB6BDibAyZ9EDKqKqYGq46g9GSsla3bVWAu1QfUr+mgIaxLhl35lwcU0INV1vyLUMXHCP6i8sgc+C6a37DcWVE80Q7Mp2ym7EQG57hiSLWn3/jqmH0nEnfPj5D4UFEOIMGwnnUmgyKH4rQLT3YYoSxSTeSHWMF2ryl3xneRoznFg8gFxY9Or1PJz9Geh+faWS9cWIxkG67uKzKi7ji+FRzRt7obhAyKZQxT/13msbEfaUWamS/XaUnC+0WqAVRCz93nxf/tz14Z3DSsm0GCKk1F5kvJair1NUkV2kymut5hblEMhfIQFb/Cs2Vj6S5Tu2e5b4DeSRNiDaf/lXrn/vELFq1O8ZY2pQExGdsxAXnHJLyct87zML2IS5n7LxHD5I8l2kyOtqytqC158oE/4UtCuvg2sfGuZlsJHYKM4jK5z3jx+4y8/4kMdY5AtaS19cw2T1aDSdqdJAs6lXi6oDICHsoVuAN3u6tVndmxe9nDC15XHWL/SF2RtzIFld3L/Kill0bNaGeKbYgAjBEepqRUe3U7r3uOedMNZfEQVEb5yqVKwcw5zEZZNHnAJmxt1nLfmadES8KEEchY2seBFTk2KlUzXoKVFeIpLUMKIY0ZQHhgjdp8cUC1ggivySecN/7aQy4IMmS5FvxETmKCVgJsrBefyOiRt8h4qqfph6LFU/V3TlXtQWV8FQ8tgNga0v9XTluKh63qJVMVuUs87zMjs9ia43Q7JV5RbHuLOG1fvXJWW07UwFxJKiRKMY/Q9QAm0LA6vrpSfeZ0K/8PJo3c7YYfsIa0ymK41drE7hr5+Oygmd/nK3wLSChZdvyduBpSG23oAjxLG8HuPzAqEuRZ524Sa6sfTY1/xtVJUHzrWIubuXSIJyRPfJ++qQ7kwg4/8u6oP3fbPk6qfaLeDapInFETghUrMKNyfMIM6I/tcWuT47de/8AxWkAaktFctRC6r8jzYT+DWqm6DI4/7M+AFVZiWPPg2Z8sLqmLsv3WNoTKTmJmkn9bkShwwYRvIqjfqkw8VhOq+mhXGVHWfAxHGir/OcZgjWoQLMMDdbLnpHSNFJa18w/gaicTqQsS4bf89jEupY2Jnau/lcEC4YzciBt0FGaKerPa5EJaTFYL1zDtJoLmUR7Le91JVSQ9TZi4yDtinA+mCvViqK4PC4rGmhr25MhhClv++c4BFZi26zz/1Em57UiBpTZly19viNMDaoWKeqHSOg12zNz783OygvehWxpb11RlaHh8wGuOLSlo8cI5MVRXZtik+xxx2IDEQkRQrCjMTp4umfI68cHTECm49iJLd5oC4hhA7A0yEK0yAdxQjKvqH4zJ0pPnZat5hMKVOqOp9oI8X8OYVA0ePsef7DQx/Fgw1Zv5zuISa0BtqJg//SxL+SF2rbUh9iYC3NerqYX+gtM8ObnWgtixgnIaRtDzAqOdq31TraD9tK+MO9shZfUKYm84bNvDJObiY2QfaIV66xRAl1EwLSOFhcILBlOe7xFAMSptR/7eGh1rTVW9uttlM5uUyhZO+uoJ6KHk9QyR+4s4C62RDP8sE1v+438shgFjjRRyvr3Ufujs9TjlKYlRD3KUVNKdejIT0xst1Ycof4WehZ8XcHB5gDhMQNGf1sZ6eVzKjx3xiVBeebDyXDGyMnXkZ3Wsd0AFdJu2UrlJPh3Jfblv2cR/i+O2yBVCzvEqjTEkvmRVgDvsol7bhUyyzwKHvYnkC5mXEh3IjgcALtNAUxJVZMoCA/jU52/TAoYz54Xm2lI5dkrVO1P/vEPOSjBUoc5oj+KkI8NVJXjMC2/npaSvQ5VYmRrTdQKopLTRUsmoe4IDz3r5SMN//IUR7yMG2Yfk2tZnYGSYuRt6P6aeRoorIJmGHU337SO7OQp2PcRjMOdb9kH+00R9H6C38c7vCjCCs4NY9+i7ORdLf7pUVW9KMmTbReyUUikKPynFGN8LRa4PctcNQbZgsJzREIWYjTyngRvij2iqut2F9Ux6DGbJhcGA0qmewQ7TyIxsgN+L5cPMUKiG4tEXljF75EkqJFQE8UbfjIpIMChuoFpcKKKkUwrFUAIUbTocETztTCJ1wWgJpV6k9ANxBTRfFmOgAh5qmhKfj7Zj7kyzTGtROn2ivTNqn5RNKTrOIos1nFht7Reir6pudNz2hx+teBPMygOfDSVJEMADggC8rb/GDVOJ9dCWfe1xTcIIDrdX9X+HLwpXaVrq2/jUJvlygh71uxggRjDlqm0SZotfnBe1shNOgg1QW9A1W0Z3AMB45LDwjD0pDVyqncrEGipJ+1GjWQpwA1qTAK5iHUXUjENn9hfb8neE0xqBPyP7+PBY4KP1+Zzy9eDNNhuyrjzB/vLeanm6T7En1WhyjuAQ9swAxF5PnkiY+qMdtAnbpyGZ2W6G8IOktx8kv/Vr/opReQFf2eaT02V/DHJGv/qMkgdyS/WZ3O0w2IaXV2gYol+b667bpidV7nNJWDxtfpCWcnZ+0JCnfvZECYkkjk6nziy/vmgjF/PQHTpNZv6hf59rvTSc0UIvmJ+xLOh/VfvyC7ZdfqHSdD1SoFi6fM9xmB7sPNF3noXTGaRry6Qd6B+qmh3H2n33oa2GTvX8gli5PuVq0Y/pyexIfd+NCmLcRcuJzHhMsXKaqwvjSN/Epuh44VuhYrUs0ltPas3snlnwT163iwHo8c1pG/m1UH5tjArQ10JzJ7peGRN1aMZNInUNnlpgRXyTBOXdH8CkerxriDXim7W7JU5ciRByiNEZNgDP3PpqAh4jjUqHScLq/cBdt1yaBBRgrop9HHxV7l9/WA+oC/wlFBopy8LQnn99TxH3CjzwQTUoZ/KA/pItYpo01fyU9NxVWhktvcRn0puxsmUherBFiwLSCGFI2QBUYzcgqpY02vpD5pH8ynnxdM+1wLvn5/d2bAvnagWYYUraavudYuQd7h4Oo5pO4hc5UQagq5sBNTzc6f/tJzIIpG3ANBGU/rEXB4akhamnqXePujaxA4zGQiAsXHkWgR1aN89nL330OVOxvdquRXVjSsWlWuKACRqHMnaY2Q1bl7W4udTEawOyRAd9e8ANxWmQt+y2y8cToTySvgWVGz0R3o4s1cjjZ0ON+XTTkHwQyGIBdQFewscUdMiSNexYnVLnLGKuJR3oSwsiqgL4pqlc=