Profile The Dataset

Lesson 7 of 10

In this assignment you’re going to profile the California Housing dataset and analyze the individual columns to discover which ones may need additional processing before we can start training a machine learning model.

We are going to analyze each column, calculate value distributions, and identify any heavily-skewed columns that may need additional processing.

...

Please provide your access code to unlock and read the remainder of this lesson. Your code will be securely stored in your browser, so you only need to enter it once. If you do not have an access code for this lab, subscribe to all-access membership or buy the course to get your code.

wC9t5YyoBMyRcP5q+d+EbKoy1FJbik28uBV7sDU4oMRhKZXv/ENxb9Fa/zKvenzvHb+2EoB0u6bJEX1PMq2oRGEa9FIDsaJaI/UWDndDB7jp4fkjZHSLFr6i379gx2a9lgZHM4MppPU8+y0ULj/l0iYGgZ96HdEjN2txuS2DAt5PRKRB/P8rIpM5WsBBwemt6XklVmmqeWChEFg3gsUQvlNbk6i4wAZve6jPLOOp3OKadQIQgEvSw1caqKh+YRkl2P9t+XVIkOaNbkOkSx2Q7Qz0qUa0Kn1o8SowCHS27FD0IHnsBLCRKTiXukUrwuq/Pa77mkgpWjBXcXvPg+9b6+TzOnoRtlkcuTfLu7HPr411lJ04OPDQaeVJaIrkpeKoHmvgYr9QGHCxAqQ9GKi+wcYsbifT1E9PG5M5yQ3IH4pUIETtMNxp5/WmS2WEv8hphqFhDOENn0GYvva2ZcxItM9g8ZeNWULFbqKIGJ0qY3W72OArF+XhxC/PCPgrRAMWLL25NJIeGfgFG3ICYkp2D97LevVMIfOqnsT6xQaq4kDMzq5QgRO9k3XzpmbAdTi28WJKkxWLHcoygl7MKqbTYWc5wZ9Fkrssx2Ofar0G5R3RScNrIVcsHzznGXM9JJm1+Pztv9uUvkRlNRPmDNZW8N6MfR+nxnJw8zWORicIlEbM+YRr259WEGUZpuN9rdU5cx5w/cd+wkU6WKaJ9JFiWXz/hl4mV8TdL+RMKh8yHl3v//8BjfsF1xs5XeAWlPknEq1HJj95QM/vKGnxuf5FkcDNmZZjkKbVyy/+x08AEKaI8twH/jG+c2RvJsrH9Aadn489ZH0gND4WCuPuTbleYBO6YgoMWEJlkBP8Gu+zTvVvwRM5hPHkPzPfJQYBoDLS7arGwTAZZiH8Vg55dUQIRkwWD4Ntexel4/lftL8vvq9yMP55ENVdShUL4ukJSBjVG927nlB12VITuIH48E3nrrVusegSv5KrG0kgMWRFdae0OpXICvvMJWQyaPSVT4xZ0FoMFBIX/xNsZjaxDF/NHC2Qad8eTSnXci+Xv8ZM9heDgXSaLbN8uXbSXd/x6Lwl63HPSOYH2H12PsOfOyx4HvXBr4Eaj8liL/chNat2j01HESrYZet9AS30ChaTiFLh/NEV1kTTYsBy2FBccfNjF+wJdW1WI7h7jGfqPNbxXDpwbCmtdN9K/hXC3RVPzf8ydYm0Dyq70OFImaxBlDVMNlW06f91sKAjo+qfPejFcLynadQ/XiF7QmcBPaBneC0Z7cz+K3UZKca0Fg5umlmW4lRCosQ9lpY/XnnVW4NHqzM9eSaACCf8K661dDO/3HtV0Fer2xPoLK71DvriN/D2vQnl9c5T0npDGju80t2Ep1U9zJxidIMpsp3hs6TsvYhrvTaS4/pU5j00wdn1ZvZYDYdDhGPavnIJtQR5xOkCbsNiKXmIXqvzTWVZXQdVkeSjMNLnayrI6jOIODk6l8vldUTDs1JX9SAT1dAWjVJog5WRSMRglJdK+uuwVGSP/eJPGo1Qn9/seFLZp6K32m6WN2f5U1iLZeimJzjHaEOsH1duW1Tbfd9751/noxE7PYA5aXm7v0HPRDzpfX8xcXVeJKhXDSjYDFSWPRwCVuPAWsj7Sl/Tq2Nqu594i08B8F6ye4iKPf6f5v/pzdToNAvGBL9qX8zfUPJ3/9gwcCMaVRsAElBCDJzB8hNXPiCaAdvVP9XILg8tqlNPJB6BDibAyZ9EDKqKqYGq46g9GSsla3bVWAu1QfUr+mgIaxLhl35lwcU0INV1vyLUMXHCP6i8sgc+C6a37DcWVE80Q7Mp2ym7EQG57hiSLWn3/jqmH0nEnfPj5D4UFEOIMGwnnUmgyKH4rQLT3YYoSxSTeSHWMF2ryl3xneRoznFg8gFxY9Or1PJz9Geh+faWS9cWIxkG67uKzKi7ji+FRzRt7obhAyKZQxT/13msbEfaUWamS/XaUnC+0WqAVRCz93nxf/tz14Z3DSsm0GCKk1F5kvJair1NUkV2kymut5hblEMhfIQFb/Cs2Vj6S5Tu2e5b4DeSRNiDaf/lXrn/vELFq1O8ZY2pQExGdsxAXnHJLyct87zML2IS5n7LxHD5I8l2kyOtqytqC158oE/4UtCuvg2sfGuZlsJHYKM4jK5z3jx+4y8/4kMdY5AtaS19cw2T1aDSdqdJAs6lXi6oDICHsoVuAN3u6tVndmxe9nDC15XHWL/SF2RtzIFld3L/Kill0bNaGeKbYgAjBEepqRUe3U7r3uOedMNZfEQVEb5yqVKwcw5zEZZNHnAJmxt1nLfmadES8KEEchY2seBFTk2KlUzXoKVFeIpLUMKIY0ZQHhgjdp8cUC1ggivySecN/7aQy4IMmS5FvxETmKCVgJsrBefyOiRt8h4qqfph6LFU/V3TlXtQWV8FQ8tgNga0v9XTluKh63qJVMVuUs87zMjs9ia43Q7JV5RbHuLOG1fvXJWW07UwFxJKiRKMY/Q9QAm0LA6vrpSfeZ0K/8PJo3c7YYfsIa0ymK41drE7hr5+Oygmd/nK3wLSChZdvyduBpSG23oAjxLG8HuPzAqEuRZ524Sa6sfTY1/xtVJUHzrWIubuXSIJyRPfJ++qQ7kwg4/8u6oP3fbPk6qfaLeDapInFETghUrMKNyfMIM6I/tcWuT47de/8AxWkAaktFctRC6r8jzYT+DWqm6DI4/7M+AFVZiWPPg2Z8sLqmLsv3WNoTKTmJmkn9bkShwwYRvIqjfqkw8VhOq+mhXGVHWfAxHGir/OcZgjWoQLMMDdbLnpHSNFJa18w/gaicTqQsS4bf89jEupY2Jnau/lcEC4YzciBt0FGaKerPa5EJaTFYL1zDtJoLmUR7Le91JVSQ9TZi4yDtinA+mCvViqK4PC4rGmhr25MhhClv++c4BFZi26zz/1Em57UiBpTZly19viNMDaoWKeqHSOg12zNz783OygvehWxpb11RlaHh8wGuOLSlo8cI5MVRXZtik+xxx2IDEQkRQrCjMTp4umfI68cHTECm49iJLd5oC4hhA7A0yEK0yAdxQjKvqH4zJ0pPnZat5hMKVOqOp9oI8X8OYVA0ePsef7DQx/Fgw1Zv5zuISa0BtqJg//SxL+SF2rbUh9iYC3NerqYX+gtM8ObnWgtixgnIaRtDzAqOdq31TraD9tK+MO9shZfUKYm84bNvDJObiY2QfaIV66xRAl1EwLSOFhcILBlOe7xFAMSptR/7eGh1rTVW9uttlM5uUyhZO+uoJ6KHk9QyR+4s4C62RDP8sE1v+438shgFjjRRyvr3Ufujs9TjlKYlRD3KUVNKdejIT0xst1Ycof4WehZ8XcHB5gDhMQNGf1sZ6eVzKjx3xiVBeebDyXDGyMnXkZ3Wsd0AFdJu2UrlJPh3Jfblv2cR/i+O2yBVCzvEqjTEkvmRVgDvsol7bhUyyzwKHvYnkC5mXEh3IjgcALtNAUxJVZMoCA/jU52/TAoYz54Xm2lI5dkrVO1P/vEPOSjBUoc5oj+KkI8NVJXjMC2/npaSvQ5VYmRrTdQKopLTRUsmoe4IDz3r5SMN//IUR7yMG2Yfk2tZnYGSYuRt6P6aeRoorIJmGHU337SO7OQp2PcRjMOdb9kH+00R9H6C38c7vCjCCs4NY9+i7ORdLf7pUVW9KMmTbReyUUikKPynFGN8LRa4PctcNQbZgsJzREIWYjTyngRvij2iqut2F9Ux6DGbJhcGA0qmewQ7TyIxsgN+L5cPMUKiG4tEXljF75EkqJFQE8UbfjIpIMChuoFpcKKKkUwrFUAIUbTocETztTCJ1wWgJpV6k9ANxBTRfFmOgAh5qmhKfj7Zj7kyzTGtROn2ivTNqn5RNKTrOIos1nFht7Reir6pudNz2hx+teBPMygOfDSVJEMADggC8rb/GDVOJ9dCWfe1xTcIIDrdX9X+HLwpXaVrq2/jUJvlygh71uxggRjDlqm0SZotfnBe1shNOgg1QW9A1W0Z3AMB45LDwjD0pDVyqncrEGipJ+1GjWQpwA1qTAK5iHUXUjENn9hfb8neE0xqBPyP7+PBY4KP1+Zzy9eDNNhuyrjzB/vLeanm6T7En1WhyjuAQ9swAxF5PnkiY+qMdtAnbpyGZ2W6G8IOktx8kv/Vr/opReQFf2eaT02V/DHJGv/qMkgdyS/WZ3O0w2IaXV2gYol+b667bpidV7nNJWDxtfpCWcnZ+0JCnfvZECYkkjk6nziy/vmgjF/PQHTpNZv6hf59rvTSc0UIvmJ+xLOh/VfvyC7ZdfqHSdD1SoFi6fM9xmB7sPNF3noXTGaRry6Qd6B+qmh3H2n33oa2GTvX8gli5PuVq0Y/pyexIfd+NCmLcRcuJzHhMsXKaqwvjSN/Epuh44VuhYrUs0ltPas3snlnwT163iwHo8c1pG/m1UH5tjArQ10JzJ7peGRN1aMZNInUNnlpgRXyTBOXdH8CkerxriDXim7W7JU5ciRByiNEZNgDP3PpqAh4jjUqHScLq/cBdt1yaBBRgrop9HHxV7l9/WA+oC/wlFBopy8LQnn99TxH3CjzwQTUoZ/KA/pItYpo01fyU9NxVWhktvcRn0puxsmUherBFiwLSCGFI2QBUYzcgqpY02vpD5pH8ynnxdM+1wLvn5/d2bAvnagWYYUraavudYuQd7h4Oo5pO4hc5UQagq5sBNTzc6f/tJzIIpG3ANBGU/rEXB4akhamnqXePujaxA4zGQiAsXHkWgR1aN89nL330OVOxvdquRXVjSsWlWuKACRqHMnaY2Q1bl7W4udTEawOyRAd9e8ANxWmQt+y2y8cToTySvgWVGz0R3o4s1cjjZ0ON+XTTkHwQyGIBdQFewscUdMiSNexYnVLnLGKuJR3oSwsiqgL4pqlc=
Previous Lesson Next Lesson