Cross Latitude And Longitude

Lesson 8 of 10

Now let’s perform one final data transformation: we’re going to calculate the cross product of the encoded latitude and longitude, to create a new 100-element vector of zeroes and ones. We’re layering a 10x10 grid over the state of California and placing a single ‘1’ value in the grid to indicate the location of the housing block.

Let’s get started.

...

Please provide your access code to unlock and read the remainder of this lesson. Your code will be securely stored in your browser, so you only need to enter it once. If you do not have an access code for this lab, subscribe to all-access membership or buy the course to get your code.

Eugt1723Dl6TujsL0B4oBXYCU0FqhD0/H7NnPStw7fPHo4irEZSc4Pv7R6z4ePWtpEVGhXxv19OSf/utp5gAclLDM4zfondAgfIDrsHV+guDKoEMcnMQOwdtMMFdaw7LvGCxZntywcVO+G0c5bYfMx0aCYJGqqcF20p0ffSfUlXscslxIrNahIThLpyOGbodvnA8mOZMGJhbRt/x76ZKbFLBCOC9M5j1gnWEn6HSwdTi8u4hxZQ1EM9vH/o8q8PsOjga4tQa31cwdtk3NvmTH7HCRvi1Gw3ZeE6/Ja30pFR3BxXJSHezb41tOjbBHGU/oN2Ln10DaIvzMrwXWxWjc2Au4O8Xpww+T+O3X/dFCQrb69vhYcLtXiiHpD0uMuwqiPowH69r9ljt5C5gtYOQ8ZWiDY79EfTCqGzTXmLCzzAIAFk52kwHYxEfyl2sxGZy8R5J884UruA0RhwVrG/pac8GuVMrBJ0DhazcGGFX+ug8WPQJNSdzFuzxu3Mbe0s71REl/kPnE93ARrpBryHLINdoxfGMJRpx6tVolalEzrCqDMGhCetw7tS1Q9dyEVNrzZrwezmOGULTfEmbxepkeLrgs3QxxvHAGWJIVH6zs4Kd0hUTHA8C/J37SSNcDd0pFKFaxtYldfYWR75r8jITHIMQiRCT8VjrRaaNIZ+JMcBRS3kxLIuiptzsFtnp7q/hRCJCXTQ1su1qAAhDKmlBbLWA4rBDCxAJ21JvBCQRiMJx/Nynf2JSy7I7lp92IT07M1ZRgL2aPFAPgeR1rT/Ltp0v9UCiuBATXgOd2D7UuPywCgUuU/NBUf5CBILrzt/O0mHQrB9nunS2Khn7C/HA3te66ACgWYGJf/oX3m0zhxFFBkGdbBTfW+wP5LvOSyywbB1Wxm1DcKbyUcbB+pAlP6cl+sYe2fbAfGNVpsVGS8fbsWn7D6Ti3dcZdIoZDxHdXQYwFy3to4/3GitqUvgPtaB0H0nWI4faGBG8ftzACTPQX4abgq36bs6xn2TjjmTeSSQOcLCxeivIDG4J3htm/b5yzIsQJVkggRglNJLFOYocEy1v1t5BIOoPldBq20WLMhap5Fh5NwG70IHFSwHY/xZZYQ3ng7aNeM5HGjFgJeWC6h91mvY0q4PrBgufbf3TbLZ3JIMjc+c+xhoeL0jLhTbONpI9B5NKfwiTnPz1jgktHnuFU1flD3ORstzpQYaE06qlzm64OoXyWqFt2DOafWnGgJsWpZy27s4rGzSqkfsT8cFuS0FD7tKmrr7PfEnhKjkkjBs0g3DytlB/5Zgnql3SgVfrnBQWXWa1GRZD/xh8c95w1CvK65ZT7TC5atlQgecfAtlSBk8qsTmun4bI9QD+mSObTK5H55cwQF78QzD7DJ52Iw0ab0lY1OxWviZLmwovoTztkBhzxj6JlN2BEgDko8WdawpsLBtPDrbt7d43d8ge4waGGkI+S36w6R6Imyv0AZjR8r83989PMgPbVzd3ZqSwrSNNyBu2lZ0MdmUcrI67qRLEAmd7hqQSDQj2GHEtu0DWF4eQGrGkATpVwbSoeKV5lTxDlX9KK2eNuoKbJhqq81O53anfOWXBRPQOzOaf8Tb4dCxlTipc1g0wV/4X0XUEV01bMrVR5P7JgScmb5FJGoE/N4SE/56+pPfd7ikf69tkZTsWR84WpYD6eoQcelptjwrYRcfgt9G0LWNXLMPUuQUXSTap5eoJWUfzEkUmGaET2ZyU4tT2BP91nMPTXjvcdpw44IiE/6DWerap4Ys+veG/uEYZzffc7Av5QgPgIdAORN4p5B4hVRytJCrwvb2gXGzuO2RzLJ3GnXusRWNcuAqR6pqtMVUfi8LuHqYtDNoJPKguQ1OgrMNW2eBIZ0kpyoETe74J4yTivnI16vLrengf6xyHNK5QkO9Q/gaOOH7Pyd3CeARht6SC4Wg7a2zpmrQRLN79rpnCHj9UqUXGW5ZO2BO2glO3TK7eR1d+g49VaOZA9hmqIg3jUKkOw0DAsYDlA0qWso73bf/MoMbrslDRIe82EddKpuq4Xv7+CUeqyPY3qb6R1gpt17GEaY4xzGAvuuFaIfVLwNxAVqWAKCKvfqakQJLdzKkTQYNp+z70VLTwCbIs8a299MovB13gmigzWCYcokV4dzN5kLU23sMo/TC5u0e/iUtPnxQYrPeBiZmMlWDV63P822IupmZrf3rptlCf7MuHw+9UyvkXaLf4ymcxJdmJX9w/dr0gOzasXuHaGRXysg2x3d3Y9AS8yaRWE2+88iiH4wKfIdj+GXDeiJAOqEyqDFJvV7R3V4bH5oVQbSyzrf5AmHAdoXsdgQRwuQ1683lElX2r/L1ChpiMFw9aFnVD02t5Si5K3EYGds6JCALqTaEesMK/1pV76teRMstKI2v4BWDbUgx+2C07gI2Q2R54AjBGAX4STv5b3qBiiQJAl7t89vXv4hO0aHOau+8h36F35jN3hkoBk6GRUTBQ0KopZjvTMTMAUEXDXBYXJJNttDOURqRl62ZPc90Aqq3r3Alwqy1nZ7dYDoh+lzGHgVVlVb0bLI7Ebv4KnRMzjWoS6UTzVD658rUbiBQlXcBCuwZoxo0BV76aEU4Rw/LTcd5G7qWY+suZQgVEXQuHAeo8Nz5oqzCw9ovDhq7LoGXjCk5N8evyMtvRXX208kEUAIcbmn11JR8RYSkc2QJAJkbQT5BbL8zzjtvmcc3CSyqluKEZzxxiqSQWlY/aDDj9g1iCPh7juoXhSP2ZzPvkctwq1gKxyGP3zrJ1BmxG2yQ8nIjt0d2MsHYfzGLw+/RkeNK1axVlf3cJaWcXyOIUVnGP21jsj+auepYd76Smfco24elkyoP84TL7XU54X2V3kochN1DXklksJK2ADezdoZeHWbWMdfaouLNRrK3tCX/XtE8awc0cKEjjL8e0R0OKkoUkO4AIiaQcxrIwPLqfqZdjg0dHrllpl+cC39qXJRdZNxTvKjOspgbnRKAD5Dr4Q5NmODq0eos23ahzWWyy6oR43nn/ND1uedQN9NjOSmOzaMaIywXxK1Bjm/Xy0JWfWFJFGNa9yCyOKAzEHtpgkR69ANlqjU7d7p/+i7DenycQN/1mAY2C1ZynbeDPHsBwvIIdC8RsW3mrH64EJBTfvsQoGPIcNz7/N4iLB5FeAHlsa1f73XVtU47WHp8zXV26YhR0Vg4PlZdLfEDQ3L8YrlblT4Wb+IiP/LnYSQwHPjh537NTtPY9BbB6Agh2lwqSOOu7ZYan31Q+Tf8xbBlR8GAGkKDNrRAU2g5MtWX+7aU2C+QtfMgdiICozJJyhPCisseTqvtx2qOlqwSOVneDHj8bszoMQSe9xtWCh/Ba9x6z7zlr4jfNCGvb28R5MDWVAxAMgszqaKyjX0YikRHZ8ponGrp6LLdPbEminqDrcCYCkvJImyKF+Y7jBKOmOP4JTwAkAThlNbJToS9EkTHIm6kKyfMg0Vpz0lkc0jC0hvhuchRWLwJZm3rB/4DzKkp2xjci8CmSrEVB/2p7KHoEcc3MM6PyGQX6TtmwBprvOWwMLN70JFpYL74zybg6Y2ysSJTnWSCwJB915xpf+ORnbfXt/iMiicEO7k8niT/bcRuscgvyLzzcMjTRwhBINZF/JL/NZydtcogzqoDi0QI9hucQbm/GmwFw7drtdclcnsKHhBjbRwKp9Y47E4jLIofWAGEmkfWbEYgisF5WYl9EUI+5EsWz12CGXb4wow1FWSd+tsDzfSo2udWDzv3KYGQCJkqncEaQ9eNL/h0wk7d8icfrRlRmh/BZoPYQpMJhVkw1/pK244EywXwtVaW8Y8RejHk8/RHU3kEels3hDnlula9LYzRNcLPvgEQB0gla2MuxD7/J4gitArLuStb1XPV4A/FdusAw2P8kihi6kbSaeDs6HO2K91QKVJRF3mwsU6NXz5mi2MiFTu9jU/0CZTGK3p0ZozKNDlSLHMkU8/V0TsrFWdCMw3/Al5o1tH6NKzOCYpeEGFTIoYB5lZYKz1McsnfzO7AFelP6QLZIgc1vw8v0snRpPwrY1WuYqpXw56CELbvv3crKqaBfhtV4ozoVoZhjTj6T1N8U5KEChdOSw/vb7zhV83YEq55Y+6qdYY5+OrAVKtnmtpDfl901uOnypLofhWV5U6KIjn46F7sR44+ELnjS4+Ozp8rlEuIFmoqjGmr2fXi4PPnOuibTmXQmgDa5F1FuXWIjG/wsoPV81tn2gn7LcZl+XUX8R7AYnWKeYIO20CbEB86j+HC96enR10w8FAb+ygXx6CjFZD4jcFcQbmoPzzGQpRD/eGvrZE4FO/flTQRdgOILMgGhxCLGPaB9/vJGEmCSmp8jnYLkuoHttryapEWNb8j171RFCHiP7/YIE7/qOf6/nzW5GJGlgnG3B71ORVO5bDuv143oQlSFC0WHZ2hlVSAnGaiuAKNKc5YjArgqqmeYOS7X7BCPXi38LYvZTFh2g2iiWuH4h5y7eTrdB1aVjL8QEYE7bk21wIYY9ajq1+M97j6PbTNmJI4GRqvpCSJDBRpKR6s2CuBDBvXaLy88GwQMJkoX8uYDPQM3g8VgxIao8lNfWebV+JWppEOvwLiuo8xK6bVmki0p2SzMfoWaz7vjZO/E72lIisI7L9EL6gilN2U4UAvNpkkaCso1CztbI+W//NDE0ReppHpqLY8GiKFVWQCOQEDiBT8SqRukAKvrmKwp4DqsrC4f1pVaxxAJSEofG3JaorsyET/6+QIS3H6rHdmXiHjHkhl1XB2vQlrI2fpbKBvklHD5M/HdgpMyZsqEHZYVnskCTO9mXPBer7QGU816MXi75pV/1iQB9gYMGmNntout8s1IegDoKBtgGuzU7Y//VyiO8MpLWlhsLS3tOJlLsJN7pR86HUtRIgMRBqw6LuJtAfn/JmkBje8se+uN4ArPRRhh9tr9FB+iyHDF39CfC34ieu+Hf0DAT4bx6sUPsg2bDX3jX4XT0chWhSXgEuoHpYajSqwodG6spNF/DpC4eE+JN6P6hnYG5HNfQOD4Wdz0JaTZDEDU4b3aDF4b6cXSX6irdfdb8kHHj9p2X+hG8KdGpufVJHhYJbX7uCltWyQG51b+NxaHVY8HNBxqt1coJkZWgmnjHXRslBEO3d3eI83jAYcXeTtislaz26a/TLnLHD006mUvMfVOfCxvvpt52SphHCkb89jo4MO1a4Mt05ALWl4V8tt8E0Gu5z4Hmwsq5SfHn+rxUzzHUEu/U+YW8pxGN78JVywaqLiApoF65oT5PyWhGjbRYG8EIRpbt35toN2MHh7Few7mKGfxuNlHBU+8yCMI9U/sU/7eeaELUjWjZqb2BBaaqI2PtwV8EIMN86ngHvV25tIVM+CyxMXt5rDrYSkQ3jitfa6BMKVB61UzpzRFLk6JlangauhjsASQgULzPHW7G8XIniaSSUrjErR8sNGOxeIAHqK6MCgJzYLDtQyTokRGjoxPQIPocG3T43pIL0v7B6T9rxPcthiFJqWt1ZAcyQM/HL9T0LpHjNtqMQRv7cwudt+4t6ubA6ff1HKWcVt65xFhB7wku5mNxTeRCXMt8LrH5+dWX+oVo6EJZkDtDJvc7vTwqaaBdME/O6VredQhMonc4eflcv1lBj4HtjCrtBmmdf8KsVI7juquLWF6WnVQhv8IFNiJOzP18338ic43UZD6lXPIbRB5MnoyV27rYWcf+BjJV0ZgpylVmDt3Hj7jfERYFkTe4VySBT3JkIz8dzFqD6SKpSxGejpgUYXa0W1kJN2vYXrJ/W5J5erYoy/j7ptpJ4VhkxMZCCkk0qLbRlEmHRPAK2lnrxzKbGQVA3BJEeyzR9QG2Q4gevkHFM1yXHpZCpJdA+2EgJLJWbqZmIBePU7JsPu3A7SL3noRcAD7pa6J9k7DdWe6w8Llj3pFhi7QvHEIqpNiDEaNcuXAfL2s7s28z5kE5N/VIiVBhgCmTvuiItZViRlMa8KFv24qvLxRar8deFQG8jWn+DpyJmNROaCuZrjWcZfckMYWTm+7CL70sbaY1Yp9ocOArifTMreMvp8/+hCHGbvND2eoRiqlV4J7LRTMV+m/XgCfEPe00WqObX6XPjR5EvcEyJKWVJhPgZUngHsevqNneBeHLrt5IhLe9bE5afvfe3bDvoYEeYqrajobkrcM/seBHJNg17VScpA9LZZXRotaRYGy5j2VTECgV+5+8EFxkII4tawALUnJQYYGdz14ux6NavVU3FjWarZthgd47EM+j3dCtXt/yp+ZD7wg5Pa9aTAGjsv3UugWNOqhWru2am6czOyWQyGesgcl31Zcxhp9Jp53dhM/gHaWmct02LmAlkofAV6OUYNbklzVvkHZ8xKE4jYSVYMw7qfvc3YXRkqp+bP26pC2z2qwcO0tFSY0ssr9y4dZdc4ERj4JtqIsZrN5zw4bhR8fNF1BzF61mK7wMKTKUxFROKBsK/Fj4BO+NVP3W6o49Oao5Bah3SNZv4WTGmvjtuFh7uK0XgsQyg7UhQjqdHvTZFggzO9smlTO/VvufoDpK0/sgl9jNbxZ2ZW1LSG4ff3wb+/cPAOneQzNBhL7V8SD2K5YDP3gbzRH0nqyeGKBDUtZm29BN654Fsr8zrayfijpN7eF0lt1OCxhVYXblrljfhcov4ybactd5DqyzBz+oSEuD2b3XGL7W45NYNHUw10BAm0GdSQfsGsOyD08DqPa55N+GhEx17DyrVEysRULOUq8hq/Bi6mVnE7jBuHdkjTZZ4e9I5w+7EE8ZFgaM9UVNRozTtbJkWbHSKYWmdh8TVu7Cf5zxqwMIIF5FZOQ23RtkM1jF0s3BB/7BamTYdNOjdkG3/rzXaF08KcTmvXVV9nmXDkf2gDZKqZNZQuHtOkKmVybfAAgu5vkSrBiwRndt8VaSA0AqOKyX4/V2jdAf0H7K6U53PBWtQ6qMPfnw2JhiLqNdQfev9esA12ZICoUurG/C1eYESp75cbI0ZuYkYnPpSwjvr90DUN/upyi0uwwSxRFELykwNMrUeH2xKi8gydZXyeStDOoK5OmB+R0IEsIH0tmBaoiW2gHMpza3+TQbyb6k94rd9S4eiGaFBfTQv5fKnfMhx9W2iXxGdU98XYw33waPzHmHCxZKMIgvnDtVmD65ynur0VeK17/wpoUpQduFVnKU2LsfrXGOkpLvwid5mGwO7A1PZfz8WNoZ9i23nfvn8x5sLvKTy3DqjC/+EKmlaGKOtB4e3TIHbwQZeKp9M4FjNtGBIkGxoIfCmIWW46xqpyb42FWcDwEHo2f14Ky/rapq648sb/ufH0vi11XlyOGrL1uxCTKu80Z/Z3EF8Q91wcZeu1lElx/9FXyPEM0fQI5cGh2yHiMI/rtaUxfmkTVbMBEQiVaA3o9OwEduodkpnXmcE4r0ZdkYHFDUSfyfdLpZYw33dA6/ro+KXoe2vJDjZZir3/Z4ntGJcXTwb7uyp22kAlpwS84AgQzTXKQagIjreWq/BrObghiYWV5zcvH/T5O8ULJMXxV+qbKGdjh/dPeP7iO/taIuxpZPSDjbVNAUEgIG3eERrRodXu/KW/GYTu8hqLf4fugAFVTEW/MCjMLj8ymA9QmDK8+0/K4J4GCeVTUhCOXaBRFEyAna6yYc9rovysReCgGXa3qvHiB8cUjC3WFpaBZcAi7A2gb+0o+iwUo94RORuyC2mEjT0/pvy0Z1JaKMt50KdiBQZQ8haMQQgjTur9PMfghLeA9kqbCRQwzO2SlMK1iIxIW94eQ8GxpM08TCMmWZvwJe4TWNADtirfXHopvbTc+4x/06pueoOU2d4uBZfbNBPeDyu9gbJytiDrjqHSy86hms2DKsTVmHUO+M5+j2Srql0hFL8LhUbYgJtG4OCnuOT9uR99zzKGW29gaWl6cLBJU8DJvyeSQR0utb+6tLBiH9xvRHAFCLK4ihxCJkjqtrzvi6Xg62xem88geIlRQuJ+7P1jCYJUR+FEsqqVNX0/WtiscJHkcJUGPJ5fPxGXnH9kTmDo0ItBJIjFkuQbbg6HsNzy6HTleH1VN0jehOtMGjuW3cfn7MWjlXE7zKtp3qf+IiFOeP44lOS5XckWf11bIZ+sHUAghDNoHDRF4o8/mIw4PXnWujghzbAgpx+1maFmrXDXG/c/cWjIk5KbHKSbRSXoxK5IKLx8gimMXZsi/ekQOLJW3bBfZOuvCuJ4ukgTB9j4ILIkK2UIXOOonSpKBow3a3cw3sBIvnRLC78vCsPNyz4s2YL6ec+zrmJFg9rRosvLtinuECVEiY0GckvY/TGxafLRv0nwaoQ6QM2CZFfrepUbXRGPC81n2tTRTUK62m8y1JYuQodUbxJBT3ESJX0XfU2eGZKxFaXU0SKxjRO1y6PytVrMMHU9ryovPOWAWjL+GmXuHd42fC5Ohi7A53Xmx1oymPHKNuI+OpSByCIWkyFIT/0dd5z/dBPMxODLP201A3eaoORn+GfOiFCEIBRi9Aezhv+J+2YLMteKg+z7cYUq62402jeC2KFEuhMgbb/PsCHhA0Ti7IoB46m7y80BLdTjBdliwv1t9yQMF7HFS3EOMzXlrq8sMIc2BnNKiI6Tv1+l+FvRDTxkUBAbwLTVeXdrTUybZJGzCe3xh0AlJx8jF/Kzc+SlsNPFCoQhGGgYsemmDjDOhZimCvT1CHXFPvU20N0Nq2fxn5ccKDIAJr07pU7px7+nS0VemfjivwgIe7In+4H2C/JKtdmFLjwyTBk9rEr93yi1yhIXCutjmToe6afzkAkPdExECH+o41e+q5avHcrxGwpOAdb8xla+zFMJUkVezIfBQn6eATLylrMPlKTTOU7UR6I+8iwiYuchM3ckD97TuWpdBrNqVvpoY1HsxbbRtAYBkp2OFua7cLWBvTvFjbUbHb8r+Tebu5/EoIIGoDMkgJm+unyjSu2gWLfAs/p19V/EmUWrDRVBCnzHMuZmazSl9Lx0Tc+M8QTwJffzBn99tOeLga7piJ0IYbQZiN2idivtba8b9VXU8q+wPsx6NUuN/XqcPMrdH07VpyhM3vhtKqrIgcCJVgLSAsVIQiEJJHgJAPiXb53ohDiYYHugVHiAg+sNs+Tex416rw5BabIltuqZZ3K9sNHxWyinXQBPAMcnkiED2g/rC4NF7OMVToTy6Gew4c2ETb1kuKSoj7tPBOSnvGOuQU5oI0a0jozADOoNQ9Z7Lbg2oQZTMq2agiedb2cDy3QLHbM4qEnWmOVtncF0PzjhYVvqSDR4bJjesyThdr7+tj7u52hQ39gxhqITR8rPrxDdiiFZqfYWNL5XZwTSb5Wyinb1ac0Y7JbZG7j8MhJCdGgIV9q4sEAUAyWJXt/SX147xIruwYT3vpYC9YM4h9FIMYWV868ENwDH8UWT0a5nqtLUN2OI+Y9qARPvIXaUlrAbkrv5cl5HUqA4IlnwdiTzuqCGsgYCnwCLYDzSLKN2g7YhWEDwm82ZFsPNdng54pdtRXhZLfvXamg9AgSxIr3NxhVAOG/zHouwAldgXnyFmnres/34/RFrd/WStwqJmOWE+abPiLlolfDLGm/MYaAqO4M6qaTb2nlzncoOAfhyOQd99f79eSPJPb3jcOu6wSWLCnc+4UFEq+GX2ZJ62ulKYUnJowi0gx8i5tW25puKqiJFZ8XqNelvAuAP8wr0/nmuSKh7rMIAXrJSqO0HEU2BwBRyJg96XEcLUlsk12v//5LBsoIhNECHIiWglcaqTMEaLyawhkiiOocorgySyC5ItzFBd8cfzPHQZRQLsqTGdJt49Nl7aBI3mWOLrrWpAdMLh41Mk8zQOdou6jER783AcisTSn+Ft1k6I9d29muHlzWBinYKDlDeMvlcTyMzjQ/mzDO6MGyVA2z4Uwksvu1sFy7I0E8ra4h5QmPSxLLu9t6i42Pe681rRLecmYlp2PTj5fn7vNrbH+KASDDnJGRnJn4MLxz9ceQnkaO1mtnJ166NwK05K7i0/LXT1jqfsVNh7hpM+NTAw4cp5TxsTu4I/mCj2LI3hlh1sqaqkNy72cdiB67K2WC17VgSGaRBWRMhxHoCYhU6Ly/8b2oMnL0ITNcycmern4QP9DL3TB93FwRsKyj0qJKa42SwEewNty9pqMWeT50zrB8JWMrD8Z/Pc4NFwMGRAcaV/6tStXTnLMK7CSUnSt073PIQZyA2bI0kZEJSvVk4NzYXzcGBcYOPUBoQUnaDYBZovH4rVbhuTWfG2Aga3PuksdFYw2qVnZF7pxVYtTxIGRgvpX+XIjrdA2ii6ZuTjaYRCMUXYr8U7xhVTvxdUBEhvHWODAV4VyX83KAWFb0R8h2RJdw6ENNhhgh/V2Mvv5OZLFYJAlJbDZcWQY5gen5c6q1JVBpxiYhjyoVGEUYYqF4APYdnFG7U4ltUCVyaBcWNX9JHyqQaFvGlOcmydeIS4v+kCr2RLAsP5DkrL7jXM0+DfmLNUVr8Eq23HzFE2/RrCacMMFHRYcSVkSfkQ2AeRjHsLW5e8z9UuK7pir0s7Zg47C1DPVaxBhUvg4ZkhzhkTCKmFrm4GhtWxld3DhuGSAETOQtXbBQ/jDLFVgU2Dyg/f5hFEF7uBajuRPJTOCoZVZoU3vTMCOP/2O49UA6+SArr/wQE04NDUkzr8eux106kok0UP5UsPxDFtryvJjb5TkjgyxHuy72hOrp96KNI5umID7Ih8Z7KTyiiM0ne0S4TFbND6YZAHnil9rv0/IYKL+YwHIZYdzjycFspGIkuiqUXhKMn415prfylrRChZUqH4KFEwo5krkBa2EbXF3+C7cp4NdiiiAceOLBFcvAld5ohAqRs6JR25F43zMF6ZlJ6Pki7bLLAedX5dVFaf6lSh+ilk/ssoW6G2ZZdOJlvFxYgBNZ5529AAkr3IiQW0+iSnNlDwK7GCrHyUrFWNFQXcJuqmexN+KAlznQPjS8p6C5up0ZpP0WodmmTIkhqiFb3Km+6v6pDGN5O1noEFHep+SzW2xlbC8EgfLnVbEyoIekM+OjJFU7qDBn3EYuIodjr7zAunHPDgcZr2+0neKr/RFwiA7I/jtIwTn+VK6HDQQT3/peP6nIO5CcIfO9ZSEQRJtUUWL8Dl/BzDSHUbqfETDgj3+/oQMDvrD43+0VdINsj8BCDhNKvVHHYwn0zaYSz6LtrTWvdSO2VqgU6aEZvAUTjc8HUR0HDZTwNHcLf1y210qYiEl5vozMpbAjls0g0gQVXuKHm2uXeOPM12ox8o6BAYTnHVtr3fjwdNY6GxeNVdtRkYrDLsuUYzLctRF4jOe7/vu1yKfu2MkkhjWyd3yu3dcA7sI2WJnqMoSED2Cmuu+tBvuL+31EiNVEczWY3N+6D1AxNSvekZMjGPXq8u3A9prurqd+hryBRWjL4fwWBBEgqYKg3fSyB0kq3W97BDTSQ9XvOslHcJKswVdx0pbTQZJbnr7NSvPuCMsauq78gi4juGTwQMEWihW3aDy8s6ARBQZVjdSOxF6R4HSFz2MWssD4hR6RTuF9PhEYB17ykZeYCVAf2HsfWh3NRJYdy02XNC9svLJ5PsNYl+ixezWH1qpOek5WoMUNklMgm9+Cc/MJ/f5tWcywDgzRaszsbCtIrlSL+1FlRRGcp5dcIPz5WUMosTSUBHOozIPvpPktANgYQ6SaeOR665PosHk0dEGCrXVo4yCrpBjutuaBp9b9BcyouGYC2rfAK5ckE2602qlryPcTSG1+Dk4wnVNuP1TdY2k8H3FZIzGxYVVYJ6z3alMtaNtRZViT/xiu6CHbTY00wU1SGGHWuRq+RTgZEkhYtRc7mhFnY4FCO232Uapcum7nGpJ7LOcadALJEXZMb5tbPY3AytVZj7YcJ8VWa8aDWMlfcHT68Yz5AIyj3pCqB8YlkBll7xKovlGyTv+Y8vGv0kvNpYN6jx7a9NSND/vsJ/fu1/lT2l028gfIPPc/rCAVZyn7E6Et+kJgFEf0unIMjBaUo5tUJzXVDbIcEYomZjbkwMA3MX42Am0SnHRa4Q/1LwWiAXNgBXjQxo+YgqOpK1uwNxWSQdMx0ed1OaGPZwHaxbAfwKHSXGblG1wRCpnSFp/BEQqKuz4vg2xCqY7ExM+AqTOSaxqBeTQ9TNEmzZM4y3uWOPgcLiCdc1Qgy8p8Tu1Zu2WSBvDHbz3hkWlHQO/a1+XZ+Vyh9Q/mBwAEBPsA31fgoDHzr3y0hO45qKD9D4rOdyXDbRJJKWDp6b1HdICvJ3hE4v7iu95MBMC8zB+MUOsUgSQLc1P8VdxlCltseuFoV8mPt2BpgjBYua4N0EAvu495lAnnoF7ei7r6dTbypKcj87IKTe+Ew2oRMzFtAByMf618meHVx4iUXQpZLdFjGD5SDQ5f16IkYNZPRYSIRR/33G6q8Qx8STxLB+oz4jSFN8HaLUVjSSWl7Hra0Tg27s5vc5mzvZlrFuQhvuBS6421WgZdqdoclY1RY/VlDpn3IWyKIfEwsOk88+TQRK9ok1nyiBuzjoDeyE8WVfPtFugrJkGijwOxPnrMkvIks5mgB37kJKrfgILn8dW5stbCPQqWF8QpVGOUx6v9OnhzqCwMe8xr+La5q9V5cyrAADoMwoL+/eEqGZlWsEANTbjEUNutKak3SByLFyjBl6ZA1+FmXJVqqr8TxmKBHxAYgHzLEC/w0qMTJJYYO0VKILYezJX94exl4mEKPaA4JwijVRt30wbE00H9g/u4xbml3BLoIokWK72BQFGrzNMB7EaYY25RUovKGEzh13woWLNw21gy1vK4ip5vruT0s1hU2RhraN19D8+0Kk5GvjNdoQYrfK86ScCJx7w0rdO8Zf4kdP9uOl384zA0vYf+mfEZfDY6zMcJ0jyVnbaMoqp1rMfK5+OLQXMPg+cNeFIYEEj6e8LcUebfSZhbmnCkqJQCIVYLpGxZwiE7NJwzHr+249HDL/SKo2kynhnReN5exndimZKdWxFJpyck7JDM/9JNn2yU9mdN1GeoNvDS4vXSDHhoxXOHHwd+UnDmnYHgU+Xa0mEQr7PijaAS13nj0l6I+atvS/KHfO+Jp28DEvg47nNfOoEfk+M0IE5N4JXMaRCFWDR1nwsuSAJhU4Nv85AWYffdvT1uZQumQz3g1ILRO1OSxjag3szVPZIduFwhSiRPEfXHGhvAlQ+tPiKHayl6VqtqiouiAdWQ3T5LnxoHhnSbTQEnf7P6Ro061V1EydVL464gXOCqLca0NneKaxTZwwkDDm7lRUwk6zCvtdzcGldGMcTpfxty50g6QgsJ2jq+Qa7ScBaRmb7q4avti0Gfsq1AArbYS8Xbg1F1RHK8Sf10GOG6rhumxLJliHx1RHLFeQt5LNc8kB+IFtS0n8iOcseUkQPhKCrjLhN4ZGO7ArlUUtcxdqv9ASt3onMj+6BSEliLxSTD4hQZP/smlUarl4z7aiuDXQXCX+UowmLzKguA2oVCvAPqrmN1x4PZL8dhv2hH3qEEBb0gqXj0qLWbyumvvmZnGyWZicRm6uUtfJkqEzSq3TYZQLmkthOzGQnjcoTcyB+MwgSjEFw4cF63d5Dlh99dqD7uSRaiwu3tEGyYoBkFe9tmMl/OofLQ4dWdUKlbWa05ZGYJuqEI8dGEkY1O6Jm83Mk4nrzvvXzydMSyXqDADz4lENwj8OJD1MLkHYQSxUNEGwWu7RatXCD8aV8cDhbPKWAmT5Yhgz2hx1uIfuJpnE9AG0KtFamdbOk9kb/i52Tt5xSRKNVAKGmd3IGQn0hSa4ysc3FgQehw7nUVuL1hIXDvCIAC54uZfhkwyzv/aPbCMLiTKRFAbFTzCwuicuKPZelsP3JR5ogirn+puf0wAmXn0zwVjQZjbeUmrPHPL/lNeDS5ftJgbvpTR5k1d/Lf1kfquU3T7wXDfrHR55V4JXL2ECeuXFvXgXsXzgKXYaNYPQTB0zAlVp6NFA8w7S+4EI+bJJAidvUyVnIbGtM8knIckoNhgIU9J/PRGf9RWrJEahSpf0juNC1n/Z1sb8OkC0jVwF7+IzKHI/0n0p9gZ1xQrIRoz9fr1lPQliWZxRf/s4HreZHcfegwM0mXX0xpsznooZDAJciWQaxee8qWc8aOcVnP28jgi+YGTUXmrBvDXAzOovE7VDWPKsIkZDKIvJukwvHLBLxDM7+D5ma5MfI+xIa4u4+7mjQXf1CNd0r6vqk7EBSo1LHuhUHUtZAdxfkwTfSSNohudPzYQ4YLC4G6kxtKRPJ99CQnJQ7vd1QmD7HQdg9MSyC1B9OgRqAhxyETCC8guLAodtmwp/6+HN4kZ4Un2GsMc1OF5W2PNvKTuLHJIwbq/dQYBu1nmXxb6lfk9iut2SdkUw05+IOv4WZMbtQUoBYRH7NW7H4oe4WOZ9qaVNMZoCDj/yR+SyFkCdhtEvGea6z+THEWmjcHztAu4pwV2z67tZZuLoa5ubBRtpN9+Php9i2olaKer3T3/jVpzlpwta52kdO7mz+nDs7Zj/8zpCRdMfxd+vgcvSoYGZmQHcWbA8WyYTziPZoVaPybZ0tTK8c11wfnbaVuCx2Vz4hgVOVWjdIUTLv20eC7dOon1w9BTLulGTpMyI/OfenqlvA9/unMqCU1/oM9ermMPC3s4j8dd+Q0fIc+eR1TYFN8v/StCUV3DUNlZSTjm3PaPnt7u8SBRBqJJ+3W0Y3CB77gfIzzPqTEon2sOSll2hjxEOBCJ8
Previous Lesson Next Lesson