Let’s start by downloading the California Housing dataset.
...
Eugt1723Dl6TujsL0B4oBXYCU0FqhD0/H7NnPStw7fPHo4irEZSc4Pv7R6z4ePWtpEVGhXxv19OSf/utp5gAcvH897wTwkT5HEobcfXPuOw1pYSb7Sg3LVEc4FtOQhEiKSACdhfcGFnu+BWFRiDLHqEjcuiaeDn5cohsljmQT4YfYxs8eklhSOnLIRjQas25SUpg3HJQLKk+hUxfXUSIgdbtHBkXUn+85+LXfPh+baDc7Ucq9lusRn3L3TVKYFr0TcwAzZLgumDJDl8m6cevPEFQBKNrSf81GxqrVvwc9jFPJlT7aRD3UWYFLHp4CKn8SfyGC75KTig2VBzT2MhBq7qsgAdSjrCIw5Lg+MopNynIRvC/zk0lDDmPnyyVoaAsqL36Sw6LSUvx5CX1FGyOxCTZ/ShhWcAozOPkNYkGj4iMRUzXb5mpsuYw5CHEpOYkSgFT3mbLAxc3v/593JHX7h/J4UAPmsrjUMKtcRM155CgWS2tq+ZbGVG9wDN0r1h58Dnfjto1lRyWO6a7Bx/OAfNm16h+PmDab/6MxS/9wkNUTlp9dES3uq1WOz+DAA515JXYKEotsMnQqp3ajXmbVO6xOAdVfZZC7mkPaKGHYxEHJo2V4L4M3dQtFTcAGGi+DpyqhMM1t2JEq26YfxMBd2906lkFDnn4or4Uh4spNu7U6G3WL2K/X92u8mAudJrr/NfNe55p7oS8Vm1o6mwypI6HQ+EVBfWdr0toleCyRi2lTaz5EG89eCmzSFEg+1B75blBJB/b8gAV1yDtR1eZT9d2NkmZGAOwrbh5RxrD6xjMwVWwaunW2ZrtCZoXYw0Tlb6yp2n7jLq3ulYu7FCJ0z/IQYMsOGMpMFb8khCtI7Kobe23TjGRUVsNfxtpXErU7HUq9jz1LKb2HFt+47P15sb9GsvQh+1kXuvzcpDGQ4wuj3jkmVtfUQvHFQrmvgi/lirqMt0nMsFMXoRRzw9ecShnYU5YUD60G3gw9ZCUmyH1n9rfvf3QzGv9A+qkcXdcQiQ4+KxIlJvi+3eAbA7XoxBhnIwYctclhJDhUk8XPCcbq5L7g/q0rKOKs8LZSiG/tGM32BfjFVsq92HwJuT0ERcE1Lern0jwBk86emmfPr/JkwG/twLdoPe1KZaxrnEke59bPqZgjHDU/Sxc/G0oIybo+V7PdaXEJaxFpWv7ZmQr8qloyqunerzrE7/WRx+hz0zkiWSHVY7O6z6Xr4qzKPFFyZqS/SJQoJLx6uQ7ZOB4r0oLRTNEs1o1kU+eM1m5i57XCkFPLXmXFjHh77J7gD+uBH2dNerxX22++AajvAcYhTRJIJ3xtHo9AdUV7JnsSjbo4dw20byC3RFr6egMCHoMkJ0MB5ZAkZSSe7gh/9LU0hn7MC+K92Bu71vX5bFDukBA+GzdJcarDcZNA0kTvYAMOp2kFYM/oGMZQeADnY2gtOeFDndO6H6+efi2ja543LoXFOu4vi8YbYIcp37JPNCYKQ/npb6xIBenBF3zptcgCpNSOsvH8XvSvLKCFf0uBeiadPUBARJszSm/9E1eNd6kY4IoXl62X7rVBIsSOywOoHQ0zrJVaMrv58afb6eB8x7EwaDZZaUfwMlILHz9h7LAQNCiJH9vmuCYkI4mQIj3aMDRm9ug6wsstuLsL3EdYfM1IN8vEo+p0XYgpVOL7kzFWOykWcl9p0I0mKXK3x3ZYjGf0Ph6kBTNFrCGw6Kb/JMfrBwFdVoHSN0pw/0cPW/kFAjPIk59rDuIqr15EGAHFjkf6cBDeCJ9lfT6/djL7pxhGVHBL0R2Nvt4ElDJ5idmbmDkC5V0OuJrfbNWKcajzr+UU8fi4zaRUF20yRjvwKmim5co196hv1v69QMX7fNRFbPhpwTV+Pt59WN0+6Z94/ie1CNFkBY7h8AJnGKoaNPPO/k18n3uIzKig6ZP4fl7kXNa0IR61okJKdAh1q9RuZMvnjgVzMYzDJ+Q0NiCNyV+73u1RtmDW61anCeLSqlbHvoeMKLA5UaajV/EOlMADXAvmagD3hmpOnCw+q4qD3rgYqgkn3GWPi85OJ1bYBC2kNHyDoTK0mMC5hK3zRCpu/wpMKdDRuUvwXGWjCtIxwFHkDc9bC6SAhi2+j/M/RmZXpO+HIAFzfKWhEyWAB6vAXRgA6Qnu91WJ+Waj1RNoEKhpse17bTqTbj7KCRVBqzg8pGjpPLiMZGKD1Yhyg9bDXuhJU0vnAFO8gmopMPRxTKozewhmA15UWTyTkDV/Qwkg9yZAmnuCAeMXAjMJ17Bnbi/Aw/T0nkgm19lSUMeDJ0QhqHTNCZeEKy9+0ZJWnSvqmzFHyMS3SVjlVp2zMbKTblk1BxBZ1hXIkIz5sTeoI9jnq8VMPag+rp3Xe7D5TTiqP2kxUqgBy/5dkwbfR1+rTj/fVHYL5avOYs8hwsv4LTiQsjaOqLuG5pBZ7xBWgvYvYI39zfd3wLnPQnkNj98oDstFmcspxUDa1YvUFDFY6kU1qmIUXSnUQZeu3qkPJ/MKO7/gXh6/0odrKNAmYMiBopI6eVM7K+8I8bOkU4+asvW17P57LNjbyWvxhcC/TEN3bQSkilrgaiHm9gGQ+gBx2bTZ+zr6aupwbUTH2fcYrLEN6272dHwo6lS3hPSZsm8I+ii05zFr04meFN1z603d3x5Q6JJr6+dtB+0Uam8dYao63M5tFfFzyM4wrlhgWutrPzdIFdnqS3SSmWjs4hEhZMF8O/qp7NALJ0qPQscw+A8y9Q5Or0NMjSu8ugVd9WlNr1uAmPv4lDUziI8KT0mN5ETm/S3fcnzAqJL/fQFw6tqy9fNkXX6OOXdivGPR5jv5wCdyWb9R/9lT/nCGP/QI/VSxTwNmU5L1uGVrQ4/AX2mAoMzVuPJSE6ZuydoOWZGYucc+0Yp56TGRpmNZ7jpVl6sZjKKY8+HBvgtNsH96tI9iA7uM4sI+qkNOL9YdRC+I/VFS02i2rSeH+zS3bkcdmv9Pewiy6H4DGQHCPQvzbdjH5aGOOV8VP287gGEIFmEVdEVgBhi4322HRas8lVSJkphS6CbAV3L2ayuLau5gcMf6+rVaTgRIzOGE4gM/pbIK5c7eAs2ScgaC+TV7dD91oEIPOkWbXEd32j0ZQlnTFwMU8nsj0E/tAUpUUYgks5ycEuAgeTFy3GQ6IAUZplgNffYc4+DNq2ut7O9W7VHA5RuOjgWanni2USQukB2QVIlgztmJCFWPuskIb0JHhUIOo0WiteDnA60IeBenSCEm2Nctzx3cLivQI5XuXUJ9DLeaTzoB0sB8VoS0Wd1QMTwoMIIBsIl6qWgelLMAWR0OHwHJKI94C0B2qHJgm1UpixeOyFs0ZTYlr6GV8IfC+x+aTR2Tp3ucaASbAQ2k1Jz3Ulr69bNqWSEj6BIqQ2SULaNjvCEhRACL+dW9gv7sTmweLmiMuvIoxFoOGzPnYjaYmcyTXK6Y+dycibV2JMdz+xlY7Rf1rxk9wyMivnpFnPjNz9bCzVsmKoBE0m42iyo9MKuP4kmHSItyIIR9Q/6bSfdsZV8UbuSozkWciWTk3qmuFVkglTWlanqmlaCAVNHumvR2PUs+E7o9PoJCt3U8WUNDRPa0l65CxL9aTD7WBSwul5ceOsJL1XRAt1APFyY3ab5K6cQPqoN9ywZbVyZsDgQVswPeN97xhkS2rm9pPqjj6nOwfqJ3CGGlLE6Q++WC4cIf0Ll+QP20u0guPJNxSBTeFN+rDPgyXflc/4AgCb/aq6Ptp32VR4V7/nH4n2qMHv91CV7J7p92EreK6zsjAjl1j+PwL4MWvAYGNu2HSpn62uvnLgaarf6Rz5XMvOpp56B2JMlZmBM8JzNgroVsay/2mncXHBmGFIGnwY4JdagifReJThcSTY17vP1niEFyZDaAswhf2jYauKTzF0vXQ==