Plot Median House Value By Median Income

Lesson 5 of 10

In machine learning training, we’re looking for features with a balanced distributions of values. Basically, you want the feature histogram to look like a symmetric hump, with flanks on the left and right tapering to zero.

But do you remember the histogram of the median_house_value column from the previous lab lesson? It looks like this:

...

Please provide your access code to unlock and read the remainder of this lesson. Your code will be securely stored in your browser, so you only need to enter it once. If you do not have an access code for this lab, subscribe to all-access membership or buy the course to get your code.

Eugt1723Dl6TujsL0B4oBXYCU0FqhD0/H7NnPStw7fPHo4irEZSc4Pv7R6z4ePWtpEVGhXxv19OSf/utp5gAcmjCTiyhlSEcicSmZKPgIW7oO9eziesr/0JXEYk2NLEAwPdYYvcDcVxobAFYgerlixKba13CBQzfefMRUPFjNqua6WyDWpt2D2i2Irk83vzJ+YF74Cym9w5zpkynCdvV5lG824gEvCWK1WvOT5m6DokyKCCq+WtbwEjgAo+tK2zMh8Z8wFw8XMdqFFMR2DJBqVvNpm7taH1Pxp+fQJIRZll0h7s6o1mfj7cS+oclmV4Sf3CUu3/57RQ9OgLA5pBmtnDmnXL/MN39vfk93A4X+h5pDsGbpU/B0ZrFEqYu3MhPoAtEhAI1QuiotKb85C+R1PTpLIonSe4DrI5YaU1Y5jU2+fjXFektbA2DtQHgg2RFw4//9BRCTEfzwIOFMeHBTj0p7y+8KM53vUjzyOdfKT4i/IM0phJsq+UeZ9MyW4y6Dfa+Nd4WIv8YKJE/m9tFpdcBTcYMRdTKddDL/bM7H4NsAFKTMDNIrnwDOJqH5qlfWoQr05Rj8zheUeocECB7VPau2wPpC6sX1PPVEsueGNGtIQ6TgiI7ndhJIRx9IL2R+Vfmksj0KLN1CZmMkpYiquu9se5BXpSg7eftGlk7HXMt14pGpOHefhoz3AYxUa+5GvRD6ay5g6PY8zaeL/Cctm9R17xxxiroMRMYoU4EhaExYKXk4J8TBkpPeIvHMfcS7lXKdocrZ0qzLK/sT974dJFx6F9dSFyMJ030+IMEKY+r9//xfRnyd0MPK62j+dQ/5tQYRH7NkQbklFoBB4zMKWMW2Zcs0VMbS5/1UiZxB3YwQr8wQjokr6RFl5HWoGwSewCgIh5s3B4NDKKxWET+xQpQ2xfWldmJQLR17UO7RihG4F2Rr3JdxNS38Oeqkw7CE3BD+5hPi0r78z4NtMbMI0OQbcJpGnnveCe0Ri0BYHshSXPAPZiX1yF4LopQdMPEM158ccnCYne1P/rjZ1E5cUY4GAemXV34uJhVpUOTMWkDpNqw27cqYNA//DJwcfkI+n/Apg/kMaT6lJ0NwkadGkjdK+iXQHuA2krBVa/Mi6mVfhZaAh5Aead+4YqYUwUs75v950iHuTcKS4uCiWVKnE96PooOPRHcPYMDNL9NWOpQVPYcW4lSAtWlMU1QWmcoM8Eun8q8oIT0taX1y1P1oQIEhPWh2758VFyyKqhAz/3Chsl6Iv2h5TDA3KAzEGc26/4F2KFr65AItUmFUCybaCGbDUh4iaZnk+UjYjapHot6QaYbzHsTYA/RjfJmSZ+Zkg3A+26TTZuJviuZFCoMrEeuOv4vqzrIDle16ZKa+qCsLtO1RMn63Bem/S6/FqzwDQwOskit+fVQgEVikDXfeCPgx6RLxofAyIemdZQ6fGvlauQ6PsgY8suU/H8kscAeusvBKy6vbe1yzJrABfGlwuCFBNXSeGyhyumQLaTbReNt26tzkaapL9FMp2QBo6b5faIra40eQ2pwM6P8ukf/bvI2vogan/M0nc/ix4LYr358AE4hY9q0nF8DocvA1ewWsOUIVznTLqkd2OOZlIy38WMBNg0JlKBYTDvQQ6Zg2GPcmIz2sws3YqEeckmezu7e4Qt7H8gVW3i3yIoJCX/GmvEtPq3yGK7B4nAFAv4z873g5r5whggpQBnYUwoPlaI9a/DsMyB2CcwvmeFwBzO/0RzZ/JjNI9eFI4iYi5shN+tgavw3MsgRymn6avNL2LBPdVn3DwpInyWJT4obTef1MjbJvCTQ8BvZ8Soq+7KBVyi9oSxus+W5u/Nga8P3RZ4P7GotE5NCg3rUNh7ouwEmNbPHAybyEFaJEmXApTw6P4Hl3+EHhWbcUcoz/1d6V8vhgP0lpadLhJp9z1S7jZHNXkZ8Q/HqupsSXpF+Ecv7S+dwa6TajWv1IqvQt1sc+VbKiKo75hUEfofVl7W5fHcTnBqcghyDyupp9okU25yZK60ZVxymOJ9gGJT4Ea3q4igr8s2dm1FzRif9nNAatBfBDrNusnHCWfxtv7Ot2Wani765sCqh4wzKgEOthhaQYQ1xc6hCek/RYwqoRHizmTAD013+Y3HFpvzPXYav9V/VE8L7xQjP1l+SvaD2OwLKOegSg0NIkEAJnfoqWn29lx1bP+yRZUH+AW0BiobmrI0oY3aYTQkS6CddKCkqQOKuCeE9KQ1kCeGJoEvz0IG5oLdktVnBepPewK6ZYg2hfRXuHx6SR77lzXKERp3/wGibNbCFjZEFE0tsCy0dIHnpHpsNjQSPRCZkgIf8WyARgz+owtA45Namk0WB0ekFtw///o5cCkl5W+T/2t1opZPwwxNDeSEqNtiWzGuXL8uzAPEAad4nYW75DMxVsmJPJIUS+ygoMVWWGO3iIRid45h+mBhV1aWhMlj84J5IRhJgwaFa9r/UPAvHKQnwpNcMOQJuAFfawy7H1WZ8Po7oQjyAEX8JI5XxMZBD1nD1fPkM4HMDD08hV6lvP5tE8tD7sTufGDxbDyYKTH2Tzn/I3+zXoS0tIOHnM1TMQ+BFOL5C5CsU2/F91dyCBBoHse1FFNHa8hNOVvE5wmTTKa4Edr18qPQlImY4l7+/pdVl0wu17HjlJ4DA8/y1v0NJnJ5tZMqGp4VtBy4A7fiAoKIVi6cq/uKQ10OrCTe60tRjXvj+bMpczVxbCwNMUGFzGckRiJieuSLKzMMdUF50fYjQfusdI6KAgApiD9Cul3VJlCL0rGE9LCrbEH2QAeG/sgjztXgQE2Ou0nzdUCOfE475J0UW7K0uEDe37uhbVUnjqZHpoobhQFP2AzxL39hr0I0Gx3tpu7Z9MnhCkxNgISzGx4rpmi3n0mTwega3J6isLLuW8cOwIhwECGE2D4EZmCWzj8+DTiFgY1ihfu4IcPWHEyUFxTZ3/VxGMGowJMJFB+/7Vbr1l7YiIbCJXqe59glj2wtCh5xPFs7HIFcKLKvvwFWrtSn5Bz3m7DUXqWf7JHUWRMptrV5YAQ9vOcuE8soltUpPQRo6qF0R2JzA8v4v7mB159hrE29B/+JK27LXNEOlP6FV5mvCVyLu6Q1j8zuL3P1lHl2MlBkAPHpzm1f+p/8F3WhLGv0tOjtRwMk1bBlGc3GE5s7JoUK5OyfW27lDRNdiPJtzzwWUEVVubh/nnqwBff1GluGoOZHBDYOR8bOmqE47ylcSbWxXeXji6Eco4PFg+NMYlOG///M0owMTq/3zVEPueJp75evLVqAU3srhB1BBrLyvSR8kwXou7trVfWu/X9fHhtkY8HORGIf8M58spOJLYtFJ6sO8X2Y4jOpNMBdhTEJg7xITg0X9UOkmc5XHn0u878KSoVbDlgOv5kU6/b1Leo/iBGzX1Tr9zntn+ey3Jgyn905nYaO6fxDGD9OBsDQdrh1+zcuUzq92sfIGU00V+Xe4sZl0YNlEN0lbfCdUFgnWLA4Luw1ZfRRlfhKO9mhJN9icoC/ZQZvYV7+oFQ4hCOKGTUubKr9dhE3NY0mHGhCNjE3bO/OTLUOgHDqUo+Fg+Y2S++fsSKQCpw/3MMgwAk66j0ibw4Oltmc/WvCg0LBcFUYm0FHSqoiApnjHtbXKK7RdvbmTG+Ws2Uqgw5SWB9Rqnqrn3IWZUA3JUZYGDWbkqzXgHR14wAvsfx+l5k2snBCCYcFhH9Yaw0BvuJ0kXdApMH8uX/v97Qn6OhZnPHIbgFbOjvp9zepdsgpcjA+Oyb3/wJuzU3UkSFreYfRC37A4ZkUXFm4OrJ2pNgkq8MjQ0KOk8DPktfNTRVOj67eK7tvtjsp9g6YFc2ywYil7/yqujy/BNOxn7m++U3RLebGsxm8BI2V8PApKXwU/4FzbYR1f82b8EMsIQ/aXJDToLr5pPSYkxF7d45NgU44vnuhrt+WQbeuY0zHNaa4n9gluU0BLDDLG0a7C3FVlaQ3Ch+H+kj36e8n9jeOqeJSHwx7z2EzAwDd9/2FLir8MzgwpysKZdxXb3NVCZt7A7rIFp7nfFTbLI6ZHCHdaxes+A5qH0JvDF6Nf3pG3yHuYTY0HN5b+h+XEaEeL6cK2IfjQ1lVk4dX9dDcxb7UFOi79qmILQEhxBmklIpnNDTMB58sP0HaDjPGMJSKyI8ed/guKDueuwuXZW/x3Z5HtALuHOfK2yZICPjNlSrLaUOHKUas7iv5X5ppG2cVuKd0KzpzpIYlNtPZl3vhQygDzrB+hU2VLWicK8gZ+xJwcgjO+42G6oCo+TvSVlXJzkwXETGr1xunQC6RvSldWn53ENwgoj+EMkTP9QT3aC8vNeWk2VzIQHzQOQjmCpXx0//MT6RnvgAk/LWb6UyRxFGimGDt+LOCh9ooLx329b4Ku0usnZVgl2kC5s6FT0BuwUwARdO2d8Qom8rdxbH6jFHGC4Kbdlj9W1YV9Iylv6l7zbnHkWu2nBMeYRskORlWdXuhZMZJDwrz8U9RvGpvvqjXNyQtbP60fQH6xYJ+9vo0pIF621lILDDnatARkE1qNyFyfqpMdH/6T7HKVqFs+TGhTk2B1t/KnxmlYc5gI22xphkWZgBklQQ++2y8lBCUEG7/bAtr70IT1yH+KproNwtybXbBaaTi4pbs1N/nbDlXBch93MCsJfUQ9b3tH1pUOwN83zdEfAdE+0dXihBdkcum0EdhDY9xhHtRoTo7e0hHu71gxVnayyqsYPKksHy/GINv3vjnAaujXsy9B5fyfOpaH4iQYQ3OKILj76GvJKZ+nfEjfWZ3ek7aqNswvR8XohwTvUq1646NK1xZES0wsJlaYrwxuJYpcNC+eXCK0ghyr7WVlWx0fcCeqETPm6PfkfT5sDMdUy/ZRYdx6ty8RT5ZOzK7oqjWS6NC+M5Ixssqz+wa4o0lq3S39d2C7d5/Zbx4WdAffNzW8QaEz2D+krzQLG3UWWyDif1JBgUobwoLEzrvK5sSKkOHpNI1f68yIEfjjlJQ+E5wDEdXXs/WVyiD0d6IXcXmpP4pcGd5zFuA7II9DeX57vRx6RkYvS5kMUVFuFF3bq0T3j5/IJlQUFrabH5bexkbxvQNKpVqbfYB6si+51htMFopWIcoiPoTSSjZAewTcTG8dA3zuxV/D8RBhM73qXsGjEyaJfPiHUM9ub9T6aSAGNLOzOf4fS8n2mpFbZ0maR0FXH5hpbnX5oEkDZVARyi4LB+jnzIMGucHnTqm0nZajsmcQ0UR7CkHR8ZlZ0a6oBf6kJ3Rz7Turq5iM6jpPCsNE1F12trTP9dXAt7uT1eIa81gZE9irLQRzYukWqlNDtawkH7lbln0qPeAk6yVOhJJO5csb6JRXwvi7DO5VesC0Fjds/yiubsvPEEM71pG/Vql/e9jYbOuNAbW9xRplQ6TIdP8mOHpJfkSyt7XyqHzwFXVpvDv0jxtWnoi7cbkPTfUmu40N1dA0MgHcFGzIsUgGWkPBq1KyKZy6JRfXqOQ1QCadHlXVpAjnlnZvSXy7SxX6KrB3+UdedZubla4uvfVzpYUszCYXIPkdULl/eiOR5DtP6yU8qmyw5QpjWykgZeYCF3TmXlElUIhI/snCnYS1JSHix/ky4a7Z8IdTy/QU2CCLbj8MhdD8IaLoUxDGN6v+bVnUot8BIFCSnALTUmW0kG1Q3Vc78iob1h2seSaZ7jT6vFCOwQ74rWsu/NCb3AbJA1atKQT26sUWgjuBiT9eCmjURJDRi01iXATCoQMGu5zJb47grzbjOYs6sNiE7jtuUAPxydrGd6rug+LPVVjVBzE8pCTClyye9dgC4Iwn1Kq+2JBbYfLkIJyDNoyOpzSHfEvanyeTaMae/saAia4Sxf7OjAXl9wKVS4GoIgzLyIYjMmjfombLRtzG8WFo02NDVPl3fj019b8rGCxq06JWSGEEaSEpSBsTA8r15kQpc3r9gmFtdrjWUS81+qB3FUXN3cDSvVcCz1hm6ILD853xNNUC2sPSa6J1ib/ljIvQtXUYysTVRBTX4gSpStUkAnDjtPR1pxVHRycZ0w3JO0d4UrTuvXVkDjvMcO6CN6rguTq84lQErEnIFAR/iBAqSdlD8XJJAIRx0T/cpEnZUHgwaJ1g2BqCkpMSJEoYiVvvHu2EKZF6mbqwkMhXXG44JvSVwneX6pASRW5yh+AqxR7o+vw0RkNL2oNxYSFWvZAYgOm1/0knBW7rhZxNgFh4ups5WyBJvpqf7e/kgVc8HYaGI6ZtTWYTcppav1pKFDcYrSJ3u+eXkAIX69QjSNF2yv7TfZ6GEanPR7Mn0dbMEEoepErw04krCPZK/H93+sThHLluHEtDEklFHWUUN2SgtWh7wGhNAr0CLmApmH6TZKBBhzrYSbYXTXcIKQFvGdqjm9v2y0xxUNhMC2PMwBLhN/n4micvVJ1dld0T8oWHOZq+nLYzejzA5J0dh6NTOgpoKJ2/ByQTGbgWN8mhMBhhhd3Yu5d79/AUrYN9FIDxtqBJTQkmVt7GeC9ooxVnPlexTkgyxxnB9OfoAVESZhGctrwEneEYsfhrHoM7fRa/B+xDMc0sZOaDxUgFLH8oaogH8bmqtI+2CNMZcIK/6R2N1/XmmRJEVrR1AjN3kYpgMuauiAExrdSw2KXet6hNtYoRAQrbt0mweAmzyNpBTDHk1HH95HxwM4/kWJNPCz+oVavCNmDl/JkcUHq/88EE05f9Hb7Wjvb3XwI8IXPFQ4aw/lren9uabQUzFwv+6LdhlcZuJippId7uSejEdpvLUOrsU46aHxTbMYQIWQLrNxMrdDwKqOMfmeix1GP8ivKTuu7gkfH3Za2ezqe8kYv9BjUp5ya4nsdMLcq2lJwpE0BeGhJw1J3p1ExGnwKQRrUZlQB4sfEdMr1IVHBP7PjkgtMP//KT8h2uki1tsm75Z21p73iwP5lMZwiBfe4Q51C8ZEnQbTtSe92lR+uqco/DGUSDD2pz64VdPEd8k+GqEYfMa0zeVzf2Ioio22pzev8rma+GsxUOSPq5c5riuB0Vtsksv/bg41EgRYeg18Fsh9pWGdohMGSzgrieevhBp/97iU7p/tisxMWICM/EaQUdpN5xfNOEes1BecGydAyxtHlJrrlZ22uqLfJavkdB/2xPCJDRDPt6+6ufJIqr1d0ts9omASV2sGVEtzWX2539TRkLDJaQJuhWoqXtUcC9D/Pk4df0ed43nGcjXiN28c8C15yP8prT9yxjZef202EFr2MoWHRf0S+uor/JEEr++cMOypd1DhkaXRBzkSLLdQCCraQ7iszppOmW3MJAm4F5C6OHYM28Y3BJlyGfS5OaS1ZSDDoUoLYVAZG+W+IT8DpgFRm7DWkX/YAyRLCL9mIb5ltpMIlehWwL/6akP3SMhvrN/AnJ1YfrXlHhwObtBPejfKbm8gL15bneM+bHOyBI+kDTFf6IqUvN8UuAj2iVHQ2cJkox81j52bzjjKvFDxDo57gqtqDUof04eQjcl1GyzoDpWdD3PGsLpn+5Aki4pzcHlExKe/c/owO4jL05sETqyh84FcYybizN2rHoGBFHqPZZ1wK3k322oAG8SK/IzlsoR7YoNt4Gte5pcgmD9G6h26Cps1fuhGNQ0tT4g3fw1+hwJSIO8HbofhbyWA+J2cTTCXzZYrvaxuI7fe7y1xC6fmbp0WunuuvLV5rgg6n5djwLSZVNQu5WUo/NkjcQanQgUzMk4qjc+YbK/hmYx9qD2gHJYQZjvYN+m59VGfv3E9QV7dyfcVEyZrcHwxqB9CAEPtmZgeoLU2UTihVrhlZ4yutQloc0ozShW2CaW+lc2r2ws81gOu5PUdiLtnuPrbhNiMxJgnHeQkipPLWgXER7beuoNMpH0gkOpFdDKORBVrZ7FnpUElN3mYr7a4178NUte/40dhN78C0rEV/DWvD3bBt1FptwKqqWV+0m1MJbPS9HaKbiJxJTJYdZZbTwAh4t6tD2GSd9PNr+OVO9sLyl+N9pOzrqOF74XESdfMACMCHz2vDcsRIk87GCtqi1tvEn6aH5dObAHeYMPF0e3NvvptJIvokBcn5acJ9UYM9OpHE7n8Xi974S+EFXcDYG+n6KbP5s9tSDmliHmPhjkwiwTk66H8F4CL5lXJA25W6xsz+8/ZcRRPiW24nYr0qgKMfpMpsWB9ORXwMLvsf8SInJhZ1Aybd4FiLV/5mcKKL6uzG9js9okF3bl36b7tNlXwuCZ5HXCC+NiH4o7BIYAoxewX48FJigFuBOCUUjcvPsYsWxe4C00tQUl4PIFFosGsq/QzO61KN0Stqf6E0JfOMT5f6nUwWFd737jAd/qx0Q6GYJlCM6V4FBcOVcJ4tHCFEpKdtFNSUcQV/pI5e6UxOeJXhsV86BJfZpbw/NgFrM46LR0V8LGVJRO8kemtVhBDzDMPHQjIzFFdKK2HFeTbV1IwUABZLUMTrp7+qjfNaAXSZscZLtDhAp78ywQL+tFX1rADPvowKCOUI8L2KJ7mvFm0DuvDqFQ2nS1RujXL5QDqAM6FACkUnMyZWlO75mnjncnFr3REIe7gg+vm9Keg/DzVEQc6a2Y3bAAUcCE974SqfxiMRxNwriKfwZKDcziMwiYNguOcGEkrG47RkE+I2Iv8WdBhi1/iQqOadwvRs8Iom1ISqLs5rDaNb9svSQ/w4CnLhPBAS95EaIZFztKz3C29argsGzXb+6++IhHCtTZSCPAhQqzRJu7X6k4ElVF6F6Afo3kQIHTf3/0pxPBypZIF3sQmRMSINBENmzWW1Omfg07bxYewMuqvYfF0c5nRElEhjQGfn04XYr5cacXjsMLARFbOjVBkUUyYnGSAqjTI1w6sgoF3PEfA5UZFi6+gWcT4pVju0Qbby3YNP7b46YnHvXn5HLvGri0l8QVzu9PJLpYh/rQLMAx1Aw2M76fTLFYY98vHVGICb/Lehch/9UqEUnAsvJQUoeErB9rWCDQrMVn4TFig6ZzpouO/HZLdrYk0CN8Q+piO+p/xMCPSOFT1O9hXD5+K24//odCLGRhfK+4sbILqGLYNwr25GEiVKPVzVXHYBw5m1ubPY/haaUxpGqajP7txIoJlNHtUWEecA0+qq8l0sQkA0jDCAvyY+YRgGlqT2IC8+0ZZhVL9MTLpVfwE12jbvDRnKuwcM/Gy73XgPn8S99Rvd1CN7xKkZDAvYt4quE1GpXdOj0JcQaUr+TtoyJzAg2E5x1ZTqAHuVq0VvQ/iEzhni7o4VNIs1BD5uOSVWm/RSFsj3ZQ5AdO7pfGxVmvhBnth76l3NCba++1fFvB+Ek7fZwbpkvAigb+llcbRhWPgUuML6m/FIVOeEZ+g1718nXNEM9dUzhj8pv2KWfAudvleaEwEgzESR8Lk7ddG7cG5G7gi6Y1wYGCeqUztnMjzZsaaKnmLYPmgBS6MbxZLsWlaEpFs+69TdyiM/GKLOS5aLLY+62t7rkPowz9/Y4q7nTJZMkCLmPfk3BEJBO0l+ckRkGVJqmlPu+SlI7OlmDZyj1H52TTHdQSxYxjLt6jezCG+xZbPvDAm+3GPjNrUx/ufuGaJf4ZFozJ189IVm3nb/GllxwIYBALvSW1rdojDfuhv74hkAK+wj8T341Gf9g0e0DUP6DyvCTAzhe3/AY50SSizos64bzw3Tb4wQXQw+3kX6OYdi3T6tstCtg5XS/Q8u024HMNXK2L9fYuvcJK5x0yZ9xrULo+ZFTWYWzr0W4xYU2t2M9v5C2SyY9KbxeFDEdVqd0uo/OF8ObNCBmrZQEACrFW8+yj+qmVuj/Lkl3NzB2r69mEJn9kegKlZVxvmt3lm6AT25MAvGsf3N5Lr5345k2at4CiQzed1th0xJIx/XnzWPl5eK4lbtpObMuuJMSV4hODWRKXtSDCKbL5Qt3m58eNeSORMxR2AxHQgNJ6/5WRgJHpV+w1KTLdiNiw3PF9tMKRqm91TltPYm/JHAJWKKiGxmEm7iVKSRBgUfeUWRqetlK0nXHIG5W7f6o4iWqgf4jcy1pvjF/I3lahjRQehOF9rSKelJPr73TJOcTimtB82eNwV8aMIU3Jgp5vaM+ztRXrudlIDblH6zYhOBKzPZe//lM54PrqPZOEoFAr4Ilf1x1/adrz8qyYkcsW70X3wowNvGq1w1WLa7Ip4OAWIpsD3yRh8sqVB86L+/5eo4FNQgOg9BZHT2occyJN8vGSDyhtD9R2OI8jsA1GgZy9zTW/SVqjK7Q1bDbZ8V3Xu8fXt11GyFP6MAYpIT5iBOZnQ44st9vsduwz8tDRXttUz50zeFFzpegGrOPNleI/3Yo88lThjsx9Es7i4AwqhOEkRZmP0r8e9+YnxVaR4grLNlnR1g+tChVc+f21R8TZtthezoL3JdfiQi6WMh/Aq8p225IWIGLtBMtkFn5mbDX5IiFAuru2VDQXWQNufHTbLM9xPEQ//ukiWbv2TDSBitobfkBDnnb7BruzEhQbMl0uA8g760vwAjIagc3juWrLmO2adb58B6DfP/qej7U2AEqsTwlLb59Pbo2Zr5l+LORKdfjrpMPcM9t/rJTz0vRBhkd9o7PVC4oP94NFMPGHsTV0EaOZDwV9YpzxMzM/g/iZWDte5PaxdcR
Previous Lesson Next Lesson