Make A Prediction

Lesson 11 of 17

To wrap up, let’s use the model to make a prediction.

We’re going to invent a fake taxi trip in New York City. I’m going to get into a cab at Times Square and take a trip to Washington Square Park. The trip covers 2.3 miles and takes 12 minutes. What’s the fare I should expect to pay?

We will ask our AI agent to write code that prompts us for all the properties of a single taxi trip, and then we’ll use the machine learning model to predict what the fare amount will be.

...

Please provide your access code to unlock and read the remainder of this lesson. Your code will be securely stored in your browser, so you only need to enter it once. If you do not have an access code for this lab, subscribe to all-access membership or buy the course to get your code.

Eugt1723Dl6TujsL0B4oBXYCU0FqhD0/H7NnPStw7fPHo4irEZSc4Pv7R6z4ePWtpEVGhXxv19OSf/utp5gAcn4f6shp3Y+4LKExb1NIW5cMNAwcYxL8ugYs5rJf0KPwtXcanlH2S1qGzqdD6SBx9E9IoSkJ7JEsyrGVSaaYZS47hiz2ZBu/PmZbdru0VxGZpGBdnDBNkdygUKE8RGYb6SYWuwk3Fg3b3UGE7hiZ1ocdBesweGS/dYduT1PJPCKiOxGYW7IS+JX4yGYv5/wwIzWXezvrtf5RQp9GZdQ6PErifdRhg4kAWIS+PnTFnMfkAdFsUZ3djBpmUguD3BG+idemruiwwS7sjuxXsBK9IRw7ZKR8XE/ukEMjWFDoghb4dj4ZRqo3jJ2ngTIqFf6z94nbf2YiYx0LL4F22kkq+bRM4qwZXEJriDYZMx9w20kLAqVOhfzxdcg7hhE9sbAcf5Dd0rbmzdO1m+FvfezPHp4gN4eP1/7d1Dec8pwCf45H4I5LFMGXFX633edz5Lc+fjAwhegA8KuMMrMYaUxTU6Dw5JgYVHlDVjMDDL24eeX47r0zvceoNltDx/y+4sWLfvu3dHNJybXNMrh8wdI/BhOhRAd3uw9rqUoPDLuFoXUKshwOg2Y8dfcEwYlRh7VUTtSMRMOTvdw/wuSOronYf4+cfDdl33JvElq/6XrV7a3qTYXCTyQAaOdMmMee9ceAMfo2RHVvbxBVdAoAItvQAa/M4L2HRI6oUDggNwSuTDKVV4gHlENUdcccPeR3BszaQ000KsS0qCbp6HR0ZRpW5JQIwMhookU8epHvAaLhHYbzrPGgub+WvrZ5qJNeS0otUPYG2u6S2WYx6zbt3Ky/J8GbGkha+HgeqlF4IWwPju6+Ief2cEnyEE8qidDVplHRFHdJ7Xt9ZT6+jh0Xzl3AkDa3Np4JEAsxK/dGpwAFp/XoYH417Qh7nNJ8vpBaC5her3H3EzkVnQxyawjlL2grCFzzKy/xpfzr9mSDGKtsrVCO2GEx8PDeATYp2LQskF3unpgb1HQ7Z7IAHX6FjboJsX/k1UMTR4a18lizwZjyOWRpYqgqqTT9jmfRWgLXrJDD2MTNd8BmOdRdaeBrS7adIBl4GBugN9mYimUGcB6cTwoAorEbaN/n9JtvX4oojcsUxEWF0GuuixK56YashKAzbUeyaoPP9TVAiPOxgSeoC+dbhewpQvxlze6+3R5Y9sxZQ3l0cQaXMHRgSu5xp32MNibr35eG6AfJW869Q9DuPgQwA3i8+xa+S7NCN/aku4XtTPYrZ2iAr/AwjhDzcWa/1Q6u+fFuwauo9fzTHrQEuxj7PwwHOcmSkFOzBm3rZjnhD+tcwWNxxvZAg0u04lyqiNYAmvnA9yRyw7DYCY+Gon0zFUfDiZ2jfzeeMpPRBmOk76xcW778/9XHVPYvv6MeYXRpUvPolk79lPB8YAK7cMrBK5HGsF6O0NhvEfaxSDcQrXQ6RyxE4A6q8S9MLf8iQKjkxcYdDHReR0RDzLn2yYQss+4JB//LOKxSqeOUQV8dw8YWQmAxt0H2eDuu2lseM0b8P3KWxypqlCXrOchmL2Z33Ds5tleiwbTIsPiDXNLP/dT5G4OErDnSeUnWRmPv5A3Fi3AVnKEKIDMIoCb+Jn3KGHT3w+/OBIPm0gycP1AArWCkokO/oCaQ4GbNwv+9uPC7VXoYCTaAXLYtqzKQOBdUAZYmBrdXf+hqd/2U77cwdkt1kaNDrGBhpXS/lOgp7BPQsCqi04GKSPdZyLkuC64G0aidO+A7IOteJYYc0oQokcIH+3jtwNid1PVI9svEOByD3viVpq/UHzm5ehSmiN3uqexwUV2iOm+DVruDp6DR4CuczZnKQb1UarqD4z7TNQf6Hj7wvaioqAaAonKwLVkr7KIM4k8kP0I05GvfEKnZCiqnjnUgyj9XZdq8WL5DPLuSV4Di6tw2+wB99+4cfu4jMwh6fPQmDnDw9G5W1+prqXkPwEXA5/4Hz5Ou5acM1WBnxJkTKfIB4oOKb80mi65MjWLv96UeY4a9OaFsFU8iyspwHIRvL0N6ZxctvaoU8LkO6tVwicKziqMABB4TrGyYIUQ7A2J2M/YKDA60R8mmLGjxoEFigDZXH/csTIKu9PHZh23GR9kPHGpPOKzAmr7cuALPJSYHzeatr+iFzlEWJ3JeLitBR5TtVy8Y1nkvmVwZH8hd7tYuq2x+DRwweDRk815WfQnf/QzHPGHneaguVrWAZKTnA4iJpjAfEYBoIabLL98XB7473ftlWQQMDDbiHdXIItE5L7U9jO84wPTab4fN/qYefHq8cFQzkLs16LKwGdpQc6wj0L+0stmYeFFzgVMptTZps9yawQAlWVwwFTQbFtRIHIdU/KbF+H6Or8JzZtuZQhIwRWTa4ybMsitfWdLYhuMxGBBhzA/+XiD2HiTGP5ZlhPv0VZ6bBrQSp7uwMgzVu0ZD1nh5GGzYHM77Xo+uxeLq7WYsaw+e9p/sT+QKO1OJ1NJ7svfyI7LndixYb/9SbEN7WSJR9k3prE6ouhg1ApzGn6kPhXsYnuk8uETbHeR+xEPpqoBcaNeg+iMNoPgIBijvixa6cGG/mxEzj+6b+Yh2xBg81a6IcYh87idbWRXvlWiQtMcDDbFXbJUAbZslFMfCxcqMpTDKeNskmKnf8My2/WUEw13a5oV2SVUWPq6ypY18Rm41AeSdr1LvusStAmy0nPe76uEYANUtfXrcwSXpr2+5L7uvFYgDvUeNWmC+ltil0yq7OQAg7iUGednriTcie6VGb6Eod3Cc/m1fZ166HCar6PShcqe4x90uO10fzMDrsDmAbD8MS7jQtshzD6/M3qtNXqnwb99EZgM4WNh5LheWEsalOIZ59eSrEViRKCVIBo/rmg4B3Nu9ias3EKmsuUQ4vRzDsZ/VvPJ8P2n9Y0VnRLGqdnsGqje0ft8Ce0xVaOK+A3eMcCgJZhgkJa/c/sQ4g13LhBP3uKEYiZBnPeBBFbzgHv7qFd4t2KgvXFKHXjH5ToYJBediuzftB5DWugzDjOHUp1BWHvqPruwpfNuWLfxjUFA5HLGBUEzVNmcIon85MjIvhfBjaz9qNQa9KOXh/HlgdSM9tvDdQSRKAs8voyvTWnTgNVDXnYlmojPJbWQjwjHyEXjBkVQkeEX2l6tJqa0JKKC7jllCWNcYLVmJ5OQzIl4pzje8tr3b7z0js+nZZ8RMCZ8aANjpF/ji/mP5RFMNIM5Vbe1B72RdQWZj+079BhBOSv0BPX7GwkwAwR5+yNg/B37FZlwmLujiiAiPQ8ONx8M+0zdhVIg0JmUOj0Z9/FwJ41LZGSuKHMkMBGj5o4z0Hpq2g3uhn8iTQf+HziaoCsIQJWNsbR6s3wamDhPCGhesOptM4TpTAZYw3j7qqn9N3T0EhvyfsBesYKHI+4TGjG+PPJAi/ZA9B8/n9g/IBwzKSlzfWDAqw3E98JDW996Raw5vFXthXMD6OTZjqB7GOta5MxvS04z9bQTME4kHq2bT8Uk3TnscYeyzfTdvQ1v12iaQrC1yKHDE6FGEjjLyVBI751sDV3XEHsXwn1QX46bqnJ26PYKbKa7IG+i79Hq7bhukcViCh6c6p+esusDHYH5vUycq7jB58KzV1fSvkD36z4i2f6rhZP9SQHIR3CFeisZmaM7JU+eyGkF7WP0I2rMhHiRkFMEHM/9URbVi8hZFZcrMKC1C8G6y7Sxm4cXLcJjZY9gRECsX61zT1sCEsI2V0zKIDY/tb6suM6LR9l00DlF9cfyXrN/JCQQa5rOXAeU20/ti7Poxjk8p5DHqfKKCqoJ1+CJD2taeJUfIt8jXaZ0JkPgAfTAhUbuSp8UmvaxTFBdmTFSXi8bFUE9K1rX9n0ZsCBparcVmUS0QvS26g71FVzINOubwaksT6XBm4bJspF/paurQwG5i2knvIPx4GB4kMxm4hELtdkaLLs0i1PjMgZ27WJv8g5+ZCXrvv1A76PiV8hFeHZctmUHcw627ODcwY2jR6N5hQ4F70t9FldcHMbrQg2gC/MlNV8F0Dm/+jLLu7HLg8LdhdF0JLRk5Hpa0FFviea5z9jVqbbrkCxg+570EnDyDUKom0UHltd/YsxCNq2ZsLw5JOo2HqBqMs0iP8W14SOR8e5oOFMGNlM58/u1IWJmgAmR4GtyPF08/ESGcAV2Xwi6q0VlLJ2vXbZy4qM6hz+7cWm4NchfdD3vlDdTLKrlSF+oq4oV+jS6PBuzMGERnDWseSWkMwkr5lkJrFm97RZp2n538FqNEC3a45s/tiMtBzs2+2iCNppnyPyF2g8fWY1dPMKzhM8q41yVZbg4SSRCimyQd9W7VOwDYFE2yEhYsCl7BIBmwM/tLtY+/XSz3WKaYtOHx8Z8A97U7zfCU6I3RNzfC/VAtAqOptpF1Q+RqyYQmChgpGUMuE2GIHLGXpLiHPpKNAY1nTT3GiGUrHzyZJjV6J0vTIQQy6TY+dy5C8WNS+PKzOvxbrsFXcKenxaa0xvffxqfUaoTna6FKz+WeWrwKLXCGBIVWpwYDTCpCKqGFHbzqaa3lOzVzc8ZUw0UzB7Z+n3ZfqmvXsYIkwaU5hmfmpliArYFAMeihpFgG6J4/mMjCilKCcApMF+A69jY16n1CW6lLDiHQBunUGdf1DhDnRjdzptzuNxUXXCu8xpV/cz84zuqm5fDANp240qZySvbi+wtVTdaqM+ECPH0/MrsAzgSzVqnUjm0mU5eFuXxq4/J57/ZckE7UJHAiFj/hK5nFpHdvnaG/TSjie+sDMFCgAZbo5jLt7Uw/xk+s9yAZdWaihYIyDJTV983LW2ZDC5GOFiwSpoXivvgzVzCyj6j53h/J0McItYvv6PflpdWIDj8KCQAKK1yjdSTAIJrQnLjRgj0tBY7otppQcnKIcvHH6QfT4jm6YZEIqOTzTm6WgnY1arW+4mm2OzSii5yDDblnW505UtgKGak7jrwC3V8UwTZk4PIOJv8On+zg3yOWx22n2MQTsV9+6qFm3NSs7hKsvV9C5JNykWcGLDPwF9eP2x2n52a8Gh0acUYIRePwFI5qSqMdH1PBjS6gum4T1AKXVW2cPvprgUH1GsNCJMVt5qgYfRGZ05/y8q0B157ONqkkOyhHQTFT/M7YwD0q6nRFHwAfHAzsSossAhmrDmXJGMWE+MgTVUskcRCh0O+6Uvm0JwXtyrMvxN9QhsgH8KfvLNlaF42mntlBczjdoCBpuuI4dZrVvqlZLlb2erJs8fPhM7avikGAoFwJ/FyugDDQrelRK0zM+wcCkNjEWionYdR6wD+BAnQA2aYyqnhN2K6bLULBn1qYRB2oWo7LjU5Zolps2YgfHw/5GSed8eWcnYD4PZZKif9s6pW3ArAavdbwdhFiwpUbfvFG2WYuFUBcvcMXzEMFvquILci9Zdi+C74sHC3y9NkhDhaJ9tm8yEjD9dvQhAoZAySnmdh8Mmw+byAmO7svd72bhNy18d1k6VlSP+TslIF6dT5AZ34lmHQgF24U2wPX9+k4mgxWMisi9+YgH8nASAaDTE2NTWoKpHlT3Unr54I8scOoYkpWsZG7FBz305hq8jNXaYGSTVc64DGQsmPqYThwcP1XfhnLh7xz4A/c1AOchvZwKNB6meAnW+NtQu0DsVuS4+G18jg89fn42MSjodnl5QIJCII3eQUu9YrptFJdiKr7BkuVQmGAgboL1QhAhN3l+AQBus+i24HIQV25uPuzs0eyylcJMCOF92AB2bJqW5YqndGaR6XL8nt2BxWMD+f/XZuk+bNhIftM7aPdUdTst/tksHjLVSid3wAwqaThYZMgSX/1ZnfoKrlYPaXY1YTyVL9sNowhhwtIo783ZjKLg75IZoaWe2gACrXJnJAdglhsJy/4hy55w6xPJjfsDdYLyjar+We/3DLaOOxGTBB/calidvIX8ZIDAp3OMkBrJIWa4hXX4mjl2JJkVWPpzfVU7dE6/1q3loFsStdo0PId0EECVI3jf0rlR9HcrlLH0AWmohQw4Xt97lWGglVRQtIbffnZmTCLuWpJARhr2z47G8MFR4LmjMVuY+KwlQrnFiWLahRQFlAMgsSHbzHdY0b/Wx/cdjrIfwFMEdsleaGaA0az+b0uiHiutdXfOkAKtwmVIkvWKfElzm9Nji2q/ZmSVkSOdlIx5NyCiQaSwbocbEINiIwfAyRcUoSowv6ZQtsyfpVFikjIVs6b6TGGSzVRurxDSAZAibLrNU1KNCYLOh3y3QNmkUTbooA0YEv5n5GwRRW97dPLtexqeOkBOYAmgv0fMWlUnuVSCQlAf29ZxDpqMudBPqaSszmOtmm1JnoHZHI9dBNXa+RYQLL4H8De1D8+dkq0w7kzUbsG6fqu13+DKc5c+XVZJd21TpSoMgEwI5l4+m+3RIWbAm/oV/fwYXAe/7IJ2xChUim+yN4oL+mAwzGlVkQcOg3o62X1OPbhFPG/rrWsocQfQt1NmGx1WSzQvp7Dmmafgbl9XpR1H1OD61AZSe5TrL29cpWpHtp8gxVLSQxOyimjFo4jT0Azep3eSyGHCvNhhOI9QwP0+EC0Deo4/A0c0K/UmxXh383S5eWbf4TXPbL+gM4q80hl9NcgzqWneAgK07D9hirfz2jslVLAAGWigSXVIenoAXfkqp+XIgv+PTQW1QHCTeP0NkWjZmEG6B4KYOqbfG5Ky2SybwU7GZcYzDghpiutzubI/u0WhCzqZVTuDYeMSnZy4xIrJQkg5ZyMgQ+X8+uDELUBetDCeVA7ougbpflqsHUBD+COwoxrqcOlKucPir5H9CPJ/Bmh8dn7j4MHqiCH2rkWFkvBhyXc7HZyk05Ku/Eb4K0jZNjE87Vz8p71ZZ+byAN2ORDKSbNaY6Bl8WWnOs/38qP6fVRhsAEBeoA8rLQSQjBiZoHOx5kHu5xlTYxpqPLjHD9F2Iyx8M/JaHZVrxSVhzJM/sYwcZ6bXlk5l0ApzpfPw8itUvoiZZ1Li2/U8gZeu+Y0uBEiXmp7Zf9rAlo4uRJyPT32qW3DRowk0R1kPg/B8a6pGfbA7SiBjWd9clscqnfCwGUrrHiVI99KkKng2KDUt4W2F042CTPtkpsL1edpQ8idFVEHZ22n294Zg1ksn2m5OWfd8Pri2tMFrmbhX/KlWNHN9kobYiI8EEOZP46PLKAw1vjGlMYm2sAVjxmqQ8wSDyC2okovwERqomSEAtPzeQafqo1ntaBU612729c7rnSAaQ3kwSv38qwwAGH3sz7Os+Vl6OCbFytYW1XNe6xOi0tlXS27es9pTR/x4VBFBI+yf+4+V4UMDHzFOvl+MEbxnVfGJGv1DTzgL8ePS1RACI8uIix6z5u/DTM41x2+lAhBUpvyYCX5buB1lF+MGidgPzxrGOsKSFevU04bmPhWoHNjH6aoPEg16B3KRWwqgTI50LlwEZ6i05o6LI8PfoJ06laKD3OWOZJwmuKLFy7Yy34r2UgzMNkpI7Wd0ym8t1o0moGwFK76qSyr7kZHeB8DlEG7aYO+AJmxXDhI++Jenf+HF/rxYAzlydkr977ltqZg7puxFq76gOrx6+C7tOnIICyPDHBy6EB0n/IODnSdWcY5JR54v80tvMEqNOivYbNHsP3IflRz+z+QlTPYGuBMyIBETKXcEECGOI8CfdbJT6JJdnZOy0YEAbgJ2v5Ry50JXu6UHPOsyhxGoBOx1iCmnf9kLXYkFRx8qcUMehTBhHiXQRoTMpieLWUD4dvuPQs7rkDe4V2MMOa5VR5XNvnscgZ0EPltTo2C613gIPUWZ/uZEPeqbRLMaMHCaVs7G4FkfeAj/tVbVhlijZSmfekCft/NAPGYZcDe5jMXIe31D0uA2aM6uqAWqFhUy2nk+ym5JxcB1zc9gt5naouuqG5AI+nTQDeLoad2wLeA6pVNtn3b3dw+eFiA4J2t1OSy9Ecg9RdNgJEf/2dTO35Lzjbc+bBnc+lFt7HwGWMS/3ixpIjFjywOBb0EoXUagYkCojJ2lZukehwtWxozYFqj2U06fsB5reSOF2mSlJJPq3Zk9rpv4w8BSKm5Inh6cMItagsWMF73GrkFRnQKSbXrMn5bFMWvjwP+JO6PtZkAMCJz66hoHqn6+vzlhd1GPTX/BrDu+eH7mF1JF6/8pCdV2+qqJ9NicfOPt8aySbxHQfgRQFndVEJDY4x0sgrXxzime8gfuALPe25+ouuAKa1L5Vz+nFIgBefNmBqj7CPc+wOl1v9/Y5vtXNbri+z5Ju6F9HBpM/Dy7M6a3pHDaKCnw01Luz3YUB+4+x8fpR1xo9XR5Ormt+y3jRCHb6KeNlSf7tjW0ImgwjOFsLIGYcx6GtukcRpARsrF/vY/YB4CW2Jn8eUBWniED5QDvww7At+fJNiJR9xkcrv/eigReUVBnIw66Eqa5dIPKN0twD6P+geei+/+2d+MuuD26c/Kx92b606MT5b6My2SYpu0Km5c/50c7OofGQVELrumojyf7eUTotnYAzQo0XZTU3fNNV4D/CKrZwTPFL8bjGhDevxQQ8bqD6LRC7FgvwFx2rTkWFotBTKg1pjfsM8CbDZ5M2QcOntoIV+MKbMCZsbYm5kSZU/iESX1IaKob3WPh1fDTmCr5eLYomo4RRy2kZbgcleXlwky8EHoiOICioQsBGUP4dU30tGoO69WJgkN4+4cOYAia2nLq4j7agmrnUUoCMKa0PM/5fH89IgH117bRY4OTk35x/6x+BTj6OImdCUD+0nlJaB70mQAFoVFLX+ITbUeF+PE2VY0Wp8iJbZovIPbO12bDWeJN5giqaDbmAhsFIOYpQbG/w41w32xaOQ3eryN3Gdu5i6E1M5hErLsVekBsVHivjYjgGpFXkvZlHuIqGPGypRHPXQFam88qMpywKxhKem1/6r/midOn9EAa3LJ3owG9jFhc+mJZWtw47injrRnYxUMiFHz4PAMr1rjro09HNWRc7QBl/CfQk0LxgAWc7ejqHqnvuyPRTmQzWWVYuozKSk96vcnV6t3Lh7efMc8lKbqAb+WRF85EmkVwp+u4mWU2ivJHepqXXauNMenuFWWdbC8eG5syIpANAfUy1ngGD9n8ScVclWiiT38XyIbOEwbJ1yerynnFloxB/bF/lbUimRJ98aIWHvJYpfjEhh1EgJNHJOrAyeR7wYeNaeesprHTRZjFB/BidMsKT/SL+akyaWgxxNLAIgGlr/pSKNENbGfNSZmGtf71ZcWr/gDfajhlBCC16bZg1Zo9SmU1wNY59kpxwimLMuEoWmoBcmGPJx2nKVaHSqZ3BDa6a775yrQRTtYmS7BLR9mM0vPpDIKQhsNZJxezkfeK8E6EPasY5kWYVrkOe90oKUFTjFIHzOzGTihUXpeWpj0Dz0KIdEhwsRqGN5U71kARl0KnUpEpB4+8sXhgTydj7bBAY5o+QIk56TwVFeaWpa/epbpkhIX8OmEXIUm5JP6TUpCDgtnXtt1pZPp52Kv8bgOiBe2bHfqBKyCuffzdjRQg2IDbUGCyKQIi+TPywsPlmCOzxXs9J2hw9pylsk/RQst9n38g+uy9FJmYUbx8pRWOi2dLyFAcDlyKKVptFB6YB+FTUEECIYURWUKa1JgQM+5iJwbjDiuLhIrS8KRJqh/l8/Dsdbqtmd4xovGEzq/UIeJ1LLNKb7NxMmeOHG0oWxfelKbyJu5Ao6dOuccUEsB86zeWB9h+j7CJkiLAS3ubgM/p2u8ZwPzPpO8w/oyiUZUks9UCHMnrh5fmCTHhXOVRVNlmQiG93UP1W8agksylLRUfFRpojSE+IMfpMBmNZ2hISJO4hyMeJR473ePeWgTfFqZwJMe/Lcctt0sPnbN+JQ6pIF+yEzW5PQqee71pS4SL9WhWnIRVsuN8ESJe0bgpxNNvtPBHdg6feyeRnWFVgci0MLnVzwsfIi71Mxm1e1h8IwfekuBITPVCr8AQrmWs2LDw4g46oUBEFwnu64mUZ4xzq81FGq+hIlevXe3XOF5iJvxAIBm0fRhmo/P1HC0q7NyMJFEy+qJ4tjFeudFq49UHDylclZ6W407mxc+PTx798COwS9cie1ut50ESQZ1ihstyVebv+o0zfPdXxXiLmtTLXSFfUOCwxHwNi88BGldUpvLQ3n6bpkfU2WRQZA0lsZLHTZgNPiHra4BADPuWdex60+7OeKiEf//mY7B5/2jsdyTrrGU8TEUclw8XmXaqFeeJbLT0hapU32733R6HCSOcBuA4/jQuXygsx1ki98dN4Z9sbs/6we39l5Foodt+aunbyfv2jyxjFPfEVAuNub9grDrgZBYCnj39Jy0NPzNQNeOw+MkhoFXKz3xgA2NDGFOpTD7bCUpX6GePj8wm7VzZvWAoL9wH/WtpYpcIjWvZCR1m6AwDk0wrXJexIxCkkm4NgASrDtAWeftuXVlTXxCXI+xZ743dBHs8hpSXMrtXYNparpwQObYoijOXNJrL2yutwi8AEM6rIHc6T6HNyezLAVS+AruUB2wZqeFnyygru9B/ZCrrJfCW3LfdDYR6LMrAwj6RX8yRunDnnPIgRFASgIpvLM/HbYdzn6BllVIWM/IOVac2j7yED2t9noDahdJNw1asIfsFNXUwXClZD8VWSTCK7OVofp22Yq6n+5UqVLP26DuiUQqDpQxLO6GoFm8zciIXwjr7y0Xj62nU6DAYia3NR3MIuNUR51YuBo428ToI4NCt83zx8Cg6ZRQZgluBdEvC8WIWZ6TFg6H774CUH2Z9xLvsG+q/szyZZ8nvdMM8nhIF/aBvroBCsYeqgdsOTLGnffFI8vQlVhB2noM14cXz9B871P9PSS7rV1QSx8j8+httyos
Previous Lesson Next Lesson