Now let’s perform one final data transformation: we’re going to calculate the cross product of the encoded latitude and longitude, to create a new 100-element vector of zeroes and ones. We’re layering a 10x10 grid over the state of California and placing a single ‘1’ value in the grid to indicate the location of the housing block.
Let’s get started.
...
9Ia2zhyEWuqfChcoOOlb9JYb5m5/yuswnclysLFRvGSjN3U6QAJRrIuqbTwxOn5PzhtPQCs2kffyM0ZC99j4ozq5k0YZCQsr8LLNCEETX7KClkBj6ZNOt9GA0G9esrcCdNbgRnO+jYifAgaVd9q31o43tLAJ7uxXxW/CCgOts7mXVgqZl2dBtrSFiDQgz5TexlOfA0MCyRiOXS86S13bUSnSyMfXxzBvEqZ8+dnYzKBAuS+GmsLH8aTVCreXU11Vm5ydTvLGN0MIA4de9jmv7sanUYuGpBHxLt+TcTOlcMd4L6J2htkMsMjqMTOOieXNu54+5qvsFAFJZdiffEhadhgjYgTbIEHGDXRXqPd9ANLVvQrARii2kE5o67lmX8tEvW3Jtt84tzJzzqoRni3WAip+XbPsv/2KU3ioCIkYxGAExQVXqHPrFubQICH4qU4alSoKN5Zn6DR/b3pEeo9UDdiRivfTj8WzUPtJ98bSNUmq6yCtCuYQdDu61RaV0kRejyPeRmxtuiuAjbxVqt0tYQEbSBob0OE45U279b4YwHDmORK1yIDBizx8d/3n/Hg2MJMmRPDWqgVEFSZsCZ9HlChgJbRS6QJYsluYSv6YO38XR7BttI4ex23KjbJVuO1Z/BIEMce3r58bDZIa7OjhHmFFDYefVcu+GZ9DMVxbG4LVjB7MjXLTxCJYRcmVMigtVMVY1gLbg0n+HrWwzQ1GEikr03qyBnqGtAJX4uktvpy69LYjCP3PNOC+MUVYF4GNUqaSmyfZyMUqLAquH7mDP2OreVwulUbqbPMa8mcLlJvcgv3Hj6XPd7cr/pQ9fxD7EFRsajlEmpMOLy0iUmqT0m7E/1GotcMLJKzRUW/KclVBKc/pu5qO2yVpc8IqrDyf8oxy/JlBoMlZhvT+QPFxNH1FY1V5sPCFX7R7tVshtxZreOqWPDLQNEBx/vC2f/3VUxbeLRydjL1JsghLZ1H6c3dXIfbkX2V4mKvfz3/PNcI/GBnI+qtptfKm6RA8Ph7Ml3L/xBK8cuoTFc9gy1jsg6wrUYxHYIHpcUn/0z3IYlmsCK073ijm1vFIAhymyd7R21kRX7yRbTj2IpDyUolQXmLwE4my86GkVpktgMusQkB7Svq2AVbkjuiKWH4eqUV9R0nGOFnpj/zC5AN9Evu1zrmHdiL9UP28iEXdAiHdan++FdSoYYkOU9ZaMUDktOQHzfqTzQYu2PyDYXKmh0b/Vnz6wCOLeTtG17v9m6S9ZSd978T7ltSw1dyjLOj/dSv/J4XibetzVCHBq6kRcfY3aBrv017YenKUhfRu91H4TjLqowJaG87+nOFeo0ymq4H5QjhG1BIi+VEp4qBbNreechDf8EOqXLDgp5fu/225emVoD5qC/7Y3X8gGfCtWk3doquclntWiTB8CmBVNNml6viaXq9nao/6QRezrdAz5aR2SrSW32nMEiW/i63gklOOzGSBVPYe0gmkZGWYV6oKoT7n11/aEHqemy+ktpzRp7n2jizk5Jl5vjHpjWvIFBeBr0JpnKGg2ZVlprbiHyWWyVX+K1YFgOawEQlhe1vp6KACHBBa11Sgiqw0jATL2qVozYmvzwivUIYUq3vD+F6+iNnNmUVUAVC4mJSDWSzppqok1rHPFpXe4sHrDakJHSWovzr0BtTFMCkUYlVlfkJtm5wgqqy/zju4EjCFayZwkxIfvu28W9L/WT5CTbvqJQwJQ1jcwOE/BvA6rcz6if+XcLB0vBJjKnT772kIpNIyx8QYS+snI12yCnIqRkCwHcGfDuzqGNMeA+SJnGDEA6f/NLBnN6AdC+KnUyZfp3oBMOTUHABdsBn6jTiyiywpuL0pD2aMYkri02uCBD9Ib6gBbynLUzDSZn2Vo07LoJrJDDiYjerYvHxoXFrpdrtltTOyu8NfCA6ZW0y7NJhHrtYBtSMrHFYTS+qEV8ESKBGDHfeO4YpsegSiKIX/2vYxYKfUmd4mytXNoDk0ypUMvAKHFK8UFxfusID99+aSZaBFP9qPOYV8XOnbAEEMaSm9pzbUY0VzylkqeGkyEqsgnBKaKwGHovI8CogxcHzAEbwYBOUeTcZx5Edunhm64y+t5+/Bty+x5bFp5ysmQULhPwsd/d4Navn1ZaktEbokPW7uMhkkaw8PQXnWM6llfqxhzyeZeVtii/cUI4Bq8a27YhfnloxGzRTVpg9p6vCqKPsgPtTwe6lOjVO0W7Q4o645FFBXmHXfG5S8w2g0BVKrfbh/nENW+lAmXfhTYp3f1uJzAkiDhYUnNL6W8Tl9cb/o5p2UbU7ROOs+pSBc6orUFgZPcJpTIejnmbfAdt0ynCSmc+7AV4BMEpYzLWnoQNNSoeoI4EDC/9u4VNXlwibZg+4Lso/DVcsCF1Eq0eavlvaac3UQJbIKsx4ZlMCtM+aXQpPHXJgJgoyTECtlQbcqj1E+mlKkxQCEQtMXUEXWNSC4Co+tV92Cn0ExuoS6PxdBdcWLZP1Xw+eH94hVCMAs7I0pH5R4k/d+eUzZAung3qymU1Mz7ssv8BJxCTkwKfvkQcuMLOI7pMkBCBiBbXs++kGuH+KgqPiPDY/N5caJeR7eF3tWPkZRhX+VERKP9JtNvZlI/WmCWuIB0hzFSQs1qi+ScxSKsxePoEgU1zv5+ygTIIyv7GwoqcDA5P/4v/bJfKSjzWmkNINBULfGo39P5S8SBxM1bPAys6bpYeNErEa+u1HZkDL4TkduJh5OSNZJVXU1O1CEz9LYctG3VVmELqzq313/iIAidBTF8axw2o0Vz6/oTu4Q1AulX8qedc7SvZh5GHRhJyabHInDqxGRVnk+QUXllQhIprcB8+52LVEvluxwskgb/At7oNHGCbsl95iCeq4XSKNcm3sL6/te5BgalFdJPLe5VRd4+KrEiNni35rV8q8JIOB0KrWuKayqnDpKgR74mhNDygJK6FtfqQPHFQ+9H2FLhWUQAR5/JW9mJzcLodzgJ8fFCG7KKVluAhmAhbbTL0XXGlEupu3+fTJ/OKOa7FdOh2pOdDCzgSmED4SkAnBmRAY/udsdQ33vlQZKWbHxOKtvzsLq9mLblNL3JpStXglu7s6IlF5cnU1dZUV9XqCXYxLw/Sru7xdN5rAxLo6vTj40xBehLIbo8IWYOnJn1nJb2nfzm3Zimwe7oyVdKLI07u6bWtrA55XVZV7XvWf3vnlGFTheISJHoQii46qroQRtoK1IAPsQw4ufAmN+FAHTignxxObUYu5HhRcxbGaIhuep1h77rgWHi0R9GU1jtXt3vsMIymi1mh4pGI+PmrxSapQAjFsrqcmioFi7fXmE1aS5jMJsHKQqC2OLyDyaRihXPxSSOhWecYgRFxs/iwGU+MxSh3ycY33Nx2ctIghFw5cG0AFxjMws0KKNrXlCVSPgcD8OqUcuPwvzdiui7JczWsLYkQI4spnEXPKnaib1JbRhPS7xU0kOfQPzk2z6MuAToheAf3dYXk2xTK7bic1urOA3WG3xSrkJp4elW8ZqW8CnUO6grMjC6BzSM7PbC7IuTE5d9uAvQpryqlzF9U0NYrEwyl+/ngbcevT0kh8imWAULJH+2b8q515WFxHF821QF+gY0hRrR1EmPA8ggn4Njne3qqi594tKQ7dPRkmVI7T7u1/GhbOfqc4lxRhhnmE7MmlWUNtDTz8jN4baCEWrzZYcZvhzcgB76p6puBjDNW5dApD8lS8Bi91K049Ijf5HiXf4X0N89byKz/AcCgfYnO2/Ig87p6t8Gr2RE34eCQQkb6dNL/YJXT6/DLYBUAanuEOXgYp2KlVLQORtc9dfOX3rfv1j2+04XAxCuVwLA094fqjAIl438Y+UeA4FVtQNLa4pDBgzee4Z+lfH7oUiZbA5TNz3sKmGyQWkWYol/k1vYevHw4OCgbM8OneoRL8/Ti34kVAWNM3x3ln5YEsHZBpWV6ikapI99MkJroARwYnFNq4neaTo4R9CNq6y9j47ojF89kIAmmXZWDId+cI8ZgJSZVOs4XRKE6EmVDGL7bUBqsBoeV7+z3R81JtNe0eeA1fkah+pQHSqPrZJP9tspaGJV6aIM42/j4sB1gIBIYKyDchtepahGOhgiEOQdjXHEHlQOyZjFJxodK2VLXA+AqYcmXDtzqREWOvVr5UpmbtCHB9WMi+FLxfzKcQ74ky5t76nuC5V0EyDQ/VFsqUGJGPuvYj5mocphhoXnICrI26cRZyZ7DoEhHZ/hEzakajSLBClL/usGajHKeBuf5b2H2j8QMKWxX2oWA5c9dlBiAKZqndffZGcHGxz1My3M/13BXdwPBE9tx0Yvl+Nj5Y4aza6ukVBy112oUphlOTnPZdxrB9h9RZtJbKZAfB9qPZuaWTzaKJGqf99JQVMiJDUKIPHWAaBh4YiM1k7No/6D1ErcQtqE+9frII0bW65R7jyhLPMIV9DtcXXlbuLFUqOAkt5CBGIvDL2o6t4Na/xF7OoRDELOpBC2e8dGfuIL3XDH6s7CyzXqgWaiUnLBPiVuhf/mYfxpESVymiFbty81tFx3bEFa7jSlNGdRg0mkl1jB5f+0e36ZAQdhOFqN4/j6GDAUBHuQvdeYOf8qLd09iW2Nyj5W3IwAx/4/wXDWdTQ2nD+ABDaHXYWf6Y3QDNh/iII66xoGg3ZihLOHyGhC5OqRPFbVTulEXtEz2t7pNzfkRRG4LeK8PWtrwj/7+ZLXLFzM4+FNRDYokeTS5P2Q/qgPTrc1n1yJi5XAAlO0Csa/oUiMkWM9Uab1rJRMn8d84j8SLOwjy0UacL8hfHyJjFkXWnoRipdkMKiD7KjOP8TOVg2rkc7mfgFHaQLivTaD90UJBLWz6Vq4FAfZyP1fOXv+DI8eO5T2GnS52Nyo5sae/GSQg4g5c3u+IazE2QCWesycnHJkjYg1uoHN2bkMHGe83bVOKiL9jV7mTvkeFvejfrMkoTdV2MQsaOwb2+abZM/E3tQA+N/oRSClRN0iBUp03TDHGtIrOohwcbc0t+SuZciuAgEY6ZjiSGa4VvU6lSQFEnc1Ta5xVZGlfh7VEzfw6WethIB4NqkYfVB7Z0/sHs46P2w2Op5wqvpwEYiK2xexR3RfI62WZTTQr2wWoJq0Miy/Py5w7HdNzWobr4Q1BbQYdr7Cciav0tURlAiyKGBMGyUmZ+3q2F8XkJTdPQz0VDtjDKd5X9ti1UbsZGTYIhgfk2MrAWYa8bI2u6wWREE5HEIxKCt0r0C7TDzCiFoGNa+gQjU+trW7xLRNFXUpyZIGxcokFqDuh3GTSZ2ztH5KadcgHuHidTF4IwWCsmDeNBXxAmoFI7uS5hdJdd7LrSayqooLIvIzGddutPrV2UZsHW3CaeatrTjFhkLvBhlXMUjD/W8NBhRDEA2HWbpBlCrOz+Wk0vnBe4vBsAtvjcBgBQkB6o5PxId1S6agRZntLVpX6sYxqV0mnBRLktrH2bUTKbXfQskpTgl8nuaRGCGeXVK2+o0aFx0VDC+vlW5bUrW2xrYsw520LZG09atBsbdI7L6WWJJ+z3TEE7dlUv7eoyw+Mnx/AHtyQOUrAHNmJUUomgS+ONq62wCSPyL6fBsAi+9ypQngrEBJZ16viDomIMuSb+UXXzJJGWCUGrw7z7++GUEIO3V/pO+azuk+txHFoG3knsAr11yJUo+D0AI3VoUZZfj5itgrEukBBQREDnLLaTHO709BZ+mVZot41nEBWGd2hIzEzSp4g9VXiapaaUlMPJ8+OiJ0Hom0oiM4WdJtlli3rThUcDWwBaijUWpZE5YXD0qhwGSl7hhQmYbUBGRB5BSp0AGNen16AqxZzmOHEa0y6fA3y5zre4675tMLyDD3SwVVb2uBqhZeyLZliv4AaLV6lB+jIoddI/zLJ+qSH5XeqG6BPG0aP6DouajJg0fbfn/4+Uu15xsQ3NVQ41XUJcfsGQwDUj5XI+BG/cfHUwgnHSZWfDtVRoIP78o28JelXWO5M+VynmUgXoxZdYb2SMnP7U+ls+YP93t49KZABvhgdOLrdnjl0aEzc1urJr1LMcu9KqgvgKJv55a6ZKtTQtjT2j8muP0xnS+YK2jj+QPPcfYB5ZFlvF/eaLkJ6YKal85345LVDHOXhmH4gvVGKjllpSLpFfBZ1w7O9FxOi9L/y/ctYU5JYkXbOFT9YBnqANQysqX4d5egS64ZeHhOpUspHRb6B/C5qBgOn8Imc3QQqq3JMuYnhXAxl9VlGlstM4Fz8OWY1Ch1ilrfBP1z+Yj4stRPWlm+kpFk2tbRm+MEZQxqkp5WTtb+cev4f4G091NcrdCUVfDkLrOTUidLG3nSCtRZ53grHOzd5QZCpjXLZYhgxrZFMkfnMf3U4R79E3SPb1Z91HltsEsVPymrF8IVhHoa9A59FGBrJSXH1UwmDgkSnMJN4CAzsCQHg5fgofY6dikffSBWjt5jtTXh1kvEbCsuzqxMMp876N+A2VBcFjOQe9Z+kriwKYLDIs9sU9CdURwxK+h8bne001kMWJgS+53STTpJeeijtKE7yF+/W1lUHUxlTuWKDXCfiJqrsZD/3UXQjnV4ogxWM4m8N4B3KNetqoAY7ASYyJx1LOuobcTNc9043+NYTUXRi+KlwS8Aw1NK01mNd6EKdiaWHdzTTd8R