Plot Median House Value By Median Income

Lesson 5 of 10

In machine learning training, we’re looking for features with a balanced distributions of values. Basically, you want the feature histogram to look like a symmetric hump, with flanks on the left and right tapering to zero.

But do you remember the histogram of the median_house_value column from the previous lab lesson? It looks like this:

...

Please provide your access code to unlock and read the remainder of this lesson. Your code will be securely stored in your browser, so you only need to enter it once. If you do not have an access code for this lab, you can get one here.

9Ia2zhyEWuqfChcoOOlb9JYb5m5/yuswnclysLFRvGSjN3U6QAJRrIuqbTwxOn5PzhtPQCs2kffyM0ZC99j4ozAGRJ9DItQb74nbZAsVpzcYkagc4n1gobF2Lt2+M6BuLrPOY1NMLmFWge+EJqMdKqpcVDd/NTmOK3Uf7SkUxQdb5cakh8cn1+k3vNSLlWt3ETy9gaEiSZjouFYGRxMXryWYjWF24Pb5ew+ssOyd70E6VuQdNheA+1ggTWPmA0ayvV9jNyom21IIMMZa+BV0Mobe1qbIe/QuZ+dpm/jfTYUBccuqPkr24/kBXoBWHDoSNA4muvhuUJ8T4MtOvFCMEz3SgEj/bOmRlY0mDuvwm2XRR5CBjLDybgvjRmghXf5lSbj7VjIe/FsR5aTQ35zrpRS+NzyOWbMO9HkWEaQjf6y/dntPSK7tYLWe4c9KtB23bfKNJKI745w80khd6jaNHu4WB7pmgiFiiAEEeUomPgs4U51PpWRmZ3Q0a9slgxH73UsBoUfOfP0fT9eN7vC3owy8WBl0fL5s0QOaWqh1ASRHaqznGGHjxVrxLrziBccOsGN9Ps57il12bj4NIIMm72Iou5uDljpVCP/ERHPmpTDCbIESY/d7ZorX65uAT3mC5wyFE7YDueYFH9cugwk9AwJzZj42KAh8k1LV304aU8BEcDlbmimUU0PRMeGj35CUlOYDsnsL5tTeIog66Y5VGGicGWhcaEKa0t+biFkdD67Yt5tYDA89417LSYclmvTMk1blhJkhW5d/IsbO/5NoB+ygU+BUvdj+mS4BUbUYm68jpZAXqH7sp0qMctee822x37/Thpv2yUSF2o0/L8O4nXVAPyXJHMYshjqKtIazTbr7+QH5eC3z9c0c2hQ/m4EB5J/Nc26g/r8vSrRNDqKJbJzs5dpQZoWMH1Ox1er2JcSohPTko6HL9e+1usH7NWsdOQ72MDdIGA+d9kYukcTzAWod0UTVAhpEXZP87wtOc3NSHY9OuEHjVJMB6agV0BESfiAdcikXf+csfT2IrAj9EgsuZ5EjbPwJ+4KpKFLnjL+vZ3Bh6slv1xH8K9E7x+JgnXVddc6/adNDPugl0VpFAEHZeaq1yte+9BJv8yrTr8Y+BBLphVYUN2SSWFjF1v2ax8NDyXFWOVL+U30yOVlVnZPvLMfKc4df16NObd7Yu8jxbuJBvvwgszBW1ZhH7Ls3LQi7EtKiZDd2u1tOZpYiF67NFEJci+N2hOmsSLxjTIWxHVwPTdsfG3ZXwXufK2oA7+f3iSu+p7WA38mPg3HrErEHzlD4yFu7Epnf3VLuS0ChcM2mM4UQciurWEeMS4QvRTv4kyuf1BUb2EQcwLWkHsHSV+WQaj/C6EJv1FAmmLhdciJBA3FP7L5Mb0QibTuionUtA3FpxLrUMgGeC4+zg9UYwkObhAdz6yKHddCbluMsKyJD3Yd35dLZXRzteSIbFt8HQyNHlGD+1R+1KVwtGwNK4zztE4p7lHXmrn2+073JrI1/I2YSJ+NOIzS1Yq5oGXAYkBF+T9q/GIwG871qYVNpCSt3ZFaJCFudFOV/qlEbtMU9so2UJuxWOHUwuVTMFf/x7Ahf5fG7rXtZvGouousHHIGVo9yE04I0H7TbYOOAV2rlhv6B0gCTFxuhBVhovHxi/h4CqPiuGQpbA9NrWu7+ZnpY9Ls4qug1jsAQiAk8LxaAeVWjuqoVPgJWKMeIeb7Y7oHS2925JSP759aN0IvcckwEOi7NzDgi87Z8sXkAREWjIp6erNy0P0nm8ylRTa5U9hg9yfnEDP1o+9AvN1na3kVhVUQIZG5zUqIb1vngGFp0IPYDEBaB/KYR85tV6+jiJsOMUNP4KVTFRf5Avk45MgnTmNAuwvgrXUD7d0aZDnPVWw6pQYGQQQWKMUB7t+mUnFz32nHvy9UXPewYkmGggD4E/SWIwDn2mKN5D8mCTTIccwx1d0UpoUBS86gZihs6B5SXeWVG4eHKZWsbIU2syVaSEuVPIOdqzZaM54dIPD6ZWVMAfujJVuKTsglalMFcU5GehTkpmZwFoWRnN58vFJOBsjFBVYr9kmwvave1gPWJ5vsnv6Ea24FW3FjADaUSH2dQoNm0Hdn3XEqGr+qgT52gHOfBze3qdKT5JNBEaiCPhRrA+AkZnGHxYLtRuSn6qDQqsHgW8VSkB2vupqwIeDO8M26oTm/fF+eEAyiwNpcudEgiidF+Ekq1rZ0WXeGeb/Vh8z4PuSkulat+04wDGUN/PUKs+8Sn9rVXLHSDUBnLVtqddDeyQDpQDFIgfEQkB1b3bORm7ASA4/VnXkIWX96hfR7LkJdrBDq+rG8rnpdJXVx4dCFDkNr9y8y0sGouZcDgvPUspyubKy7epk4YfqMNkhrlNRi+Y3Lnvm7+uHf0oWpSfl0Qd2CGKIZ+PtL+wiC/dxtynG6g9SUMGPANstn7zmRzqXrF/XM85SpqKK89SNa3ghWVO1/0q4RYuKr8O24t3s0ni1za2wfPYaRUfQ+nZCkMMcXbhWQP+fC8pP+YAL51qL8UXTmUl3bpTQxoudwkhyX3zNmlnrdqO219/OYxMbrAPKD+LBFB3JlicS81C42yVOST+3MDe0cmQisudmCYeFol/BSJouMvBz/Hsqdn87NIKeMEcbxx8u0x3L+WvMFBoOFm63sY0fcOSFfkgd0NI5yjqZqF6Ta07Ow7LlK3NQrLTtMNAmuN7ecu106Eg9yv7vjefTacmhx331gsqR/xAvfdbWudvMRVcDErRIYKx7UOPWddO0K7uVL6ONd+G3FUxJ/kSKEt4pgjig18M8w+yrTSJbeGXvFHDyNsyB8tgJK62LrLz6qbWJwcDtBxoWfb5KqVhJkrWoMUHbfWh329nNEdviK2dgXVtjWv3JK2OLOeyGRL8vmhrsrL7oNd+XfyvTzbgqC/Q2MM7AyAH62kjyX2YLFcDCU/aNaGKNFk6AY5kDnlGcRGPKezr53O9+/9x9QQPK5ccQzJWRdbaj/C2StERC9HhCD/Bqm1nhmJeZWgW/ZeiWFs5qENAb0KIJ8VuQpg6jShgNijy6ZWbk5CmSZpD47UKeODVtaVA++BYHsvwZ6/BnQ5CF21zk//8ypSiNYymuCKnXXpHC9ph9Nui8Coe89r5UT2rPH3xJdY2J1Y3DS8KlWj9rMXzCsY7XudMZF3h4NzaXr6bLEkmRIUHn2CaHt332fs3MV7/wGcsYk1ymQK1QX/Ot/vfy3zYmYtH6s57ZMWmHkGvuo/o6mKsApyuSKFpnLC9VGxyJxnu+dpzmPFzsbuKRV/h+EOBCnL3jxueIyuf2v7kktE8d+xWtwXtH3/n3ztoQEH2miMgOpb3qeCmPuRUd5OqhBMoacskyeOJgwlY6BaN6fa0+/wl1rWMdvTuk5Nk3+ImbaceQkPM0p+omMRIwYmhnGfx6wGw284oqU3/wvtwhKI4RO6NjFPZ75CvKstbV+/5a9fz5YuMt6y4n1LY3YZofzyIOk1ksK7IwLOca00TL6qdOtKlpQqFMNqZEcCqS4BwqDyx+hJCh0bLKgWxKKSo4mx1kj7PMShQybSJcYOTZkWSpyTa6t4a7yFCaOFPlJR2uTbS2h9ytTixg5RnMyHXxcH1oitBrdkQFatDZEt5hj3S9kfbW0aDM4086lD0yKBrNDqMaFDLmQIunJY4Q3qSKTg3OPtAnrodJ85HtqMm8l+RkLqr//e6RMX/a7zkF2Rkme9FfiBPU6U0CegNWSA+VV6cAU1ZLnvTrI9gheM/jVm2WSOYTF0rfT75P00CR1EKz3HwMF02xfGwN1CUJnm1J97dRZy0sQqlANfV2ade8k0EMpXEVpmLHqbWRMLurj4Z++/dukg+/tdYMZgs1l/EHHiP5LR6R9G67UGUxS9y4TdTncBasftAtXkuDDwhCk3SQ2AbQkZTwZVrQ6FB3o8//XYjEiV9bqZWpg72g5pXdEyrRSmy6vYMsM0LiL/cYezr00NA+BlrTMIBlc4nH13tv6d1+HbjtPlLyykljFl7psaxBzD4ixHyrxm3Qx/1ps+SJsDCNDFrUZAFae/KNZ+Z5VlQ7FbjHiYcswmU/zllpNai6sCWAD0c5PUu7Acwi4Q1vS2bmYYcdBR1ssAH3OYsxOHAWDpGxNTdyzrSYKvRK2U+YYkTXj/x0AEkbVrASVfeoPdQFvahHmEEzLiRdlT6QcKGnsHaDS4pYbiWGISP+0O2Muw/+eKQPDT0x0LqEr9/Opeck6+boSwttB+V52cJFCuaIgukxkSwfgiWRqW9JjOUDfMEZLL7FASDW7AR1dDxqBM2If0pPxweE6WlNk4qjThoWvZpgVzBovqrRZn+yd7gKa5XQgeMkLylZsmVv5LqGs3Q9JsF2hzR/8TJgFzW7pFpA/JhcyAsiRncRjncVzKPQKqzLDs624jyANBUhDKwlCM0KzpePHJi2hmuJp+69U+yYv73WJpGqiOWJuDrX8HG71a2D8LsLCuVJq+H3bJEXokl8z18CvCTbFR5OYpR6MpNf/7PKgr/8n2MGCRjUVOTTHg2ZBVXdwSZAtfJ/6kY0nG436Jzthtb6+Z9naj+6LQmG1YaCJkbyax2+3dxKjWLDGWjn3hdJa6x53sXEAJec3Ok7gjs6Vnv4+91kwEBBJ2NCudNj6r2KPHm/yjgtjkm+j/XKd83iAoNHltg2JdrQxCC/j2Kmk572Z5zPOD9QEUC0SbVxsCHwdzMpkkWFEyG6DXbIee26mFNHu1L9HYdX4TaMs1xkMGgsCwCEVXvOvhY4PDBFZmRibbAlJzbrAiQo41yrfcN3uuoro/eMgGpwv2vyjJ2Qw8EsmWTcYd33Hj74mokNnwrnLOTZNfXsMrF9yTy4Ea4hslfg7yKq4/H0bnzj+1HY4qGIn/GzBMjNC8wg+0asOmn06xm37e7ykZGFmiteKrLMlv7J436A==
Previous Lesson Next Lesson