Now let’s evaluate the quality of the model by having it generate predictions (called scoring) for the remaining 20% of data in the test partition. Then we’ll compare those predictions to the actual median house values, and calculate the regression evaluation metrics.
So imagine you are a realtor in California selling houses. What kind of prediction accuracy would you consider acceptable?
...
9Ia2zhyEWuqfChcoOOlb9JYb5m5/yuswnclysLFRvGSjN3U6QAJRrIuqbTwxOn5PzhtPQCs2kffyM0ZC99j4oz0U+C4y8/ZetanNTQ63CKJ+afT32D2KisLzTnbEACCCKUAmZX7kccP2+3HXsKbah8w64K5qBc8QvhzLKPFvBevhBvXFXD36mqnj6Snwr6oqaMyQF0nrlorc/kk3rAd7TtPnVALrWwkMneCpJGK60Wfd34EOBRN802SiefApfwzOiGZv0zhERZzxqt3NpyBXUeXZsFxAzpAkMe9Gf83Nj2v9vepFVZ6LxJDIouuK9v9G9NmbLoSrsjIryq1Ics0IeH1rBLFVottkqLmS/SD/nbZBk3bYbj4RpcZyYXfJlPs00i5XD7ekCwJxAKTHBqAN+Fd0lr3A9BbZ4Tk0zIPAVkQx2ENmOxBne79xQuM9FqMZjLk1ZntNPvv8SGqScCw4GGjCwbS/gzejVp1RRSLELM7ePdnjVgztuwPCBgVtjE2+uVa831pr/aJxUWVvBqdSi1pkSSIb9nxrOQbI8rmibEPYhhyzv0DKbV3nRx3EleX4noDbR8pbkx5RFYqXnSXQmrEgCVE8maupP2CIJ3pPR6PAkrud30zGfrYcIhcaAxzjgOeKSdTsn1zBAAKxR8aqmKNshWtWTC+8YzaKvLDJ08oh0jDqFrVv8HnbTLAJwePXMAjqKe+n4mnavt6pmI73eSzdvbJB1Vm/F/+prBVA2E8+KguNNzLhtJzSxE61e3vhXlMlwNDU0mhJ8c8/K4RExyM6Oq3TpchK3ZCUf7epCorttWnnyeN+Mxey9IScn6/6MVavkEV5yhHoPNN4SGrm/La2hUtiL3E3vkqR3vmWA4la9b77xb2iu5mY42KIWs5Q7rzoHQhHu7Vq9vbEqkIGk8if6fIlFOjC5s2JNLVoAlTXx/W5DlW7onkQU8Lwc8DBFk5W4ndI9DH+Hw4pM1cWY///9YspXmRACvrSyq1e2iBtze7fX6Oa8LxOFSaqjXBA37Np5YAiWLtcntPqtT/OeeKCQEeazFEasXyCulRBGPXUbcMD8naRpDtKPcBZqa62LSApVkisYw12pzq5pyD+TvgIesdDICHrPoR+Ezb2S2kbC2ElV+Mck7im6/U1jdrHkt/LqSaK4KUQfHlMBaa3QrWpd3zqN5NfywQv9GXaGWnmiIJJAEDzB3S2URRFdMp7X6rIzyAYFPm2iktZTL5fjcQwrUn96Rw5zAkcpg4VkEndo36wmuumdGgjWMBznqgmqupsqbgLWStjcxawJyth18kteHXWHGnWuH83JDcg850FcTNHNxxW/SFK9BtuqoQW/HtEPDVXCdZFkodDd0DtfPOWc6WyfHDC0MKxovBiFATn/K/E/jd6EncBiT/awtPLpCVxsvnmgjDfsMPm/2OcNsEltAmlV1Fa08TuRQjCzWBtI9/gSFejVnytKwmFT13CSCKtt/mlCid2KNHnaqdGQou5CL8yi2NCqMDEhLSYPV4HXrpFzKjihAnJo1vzE9Pki0vF9+bE5j6VL9942fC/YklEBBiShvyEsB61oaKlahIyJA/Pon39ek8cT7e/AtBWPZwwhrQuD582kzDHB7cWbziEPGXhRd3cJz++PC4KIZ25Sd6erZyOBqFYND+75+mhRoZbwHhzYf34kS7G6kEWNvom6hodzj2BfmnWuG2FVLrJm1BQWkhLTuoMHbK0fQEvIsGknndr7EoAkCufjnqTwLa6rHiyZWm8OlW994gJOlM9T3DpCoIgJ21ibeXjqm3nvZ2DB2zbQa2O9T9A8OivWnJ/sGAIgRsKVt7ngSvmSSAQTzM+ZhIZtZoYeaAU+qZ7IdSf1FOPaZ1xpMQKRz2eNjhARJf8+4rBqj4iDQn7EZ0e3wT3WReOesWV0UE2i7cUjXQJEZOpcfi6HoFophDEocYZ8SGCSpzOPfpmlwxJk8gIFjoSjRV1R05NHJM5SrXZaoWgZLXpzvcIU31T0pYFdRCR4BSd9YuE2zuT1ifSm+yQtblGlODb7t/ieD1UqKlSsCUudnd256CvezBcYKId07v4E74axoJjM/poC/vYk7Cz96O4Ndse6JaK7pdTRjHMTdbcpJsn+tOoQdoX7tMbsUMuzMMp9wUWdAn9TG2kzREPjoy9Tm5NCoYpJUDRISAL0J9c0ze66BMxGSVOOxDrXVWS8I4yCuGeXLdwrLyzGASzL/p5EfekJCbTY44ymHP4ke5feNVtar0G121tSOdAYkqaytPlgE7Q6k7qgQrjtfQi38UkJEGow255ha/++m7lbO8EDJnbdze/bbon7wlfTvxa83pAiiFG6Xpe1lZW0zucDMBdT7P7MHGmHJc/vmTtyfAlOpp9R8Tw1uC5nlF46K498dc6Hrq4//VTfVpczhx73jhaMM5E6Wbhiwk23Pucc8klUEnb2m5vwMfD3+ozhBINUPXvx6z/1BBZ1U6MMotaUY3nwtAFM2IxNZkXqZRysHo3FxL4uAo4d1Px57WQzo7ersjTBMA8XnxoXoaU28j+myq6ZrNynIjz4ua0+uvPHukC/5LwxNokNtO+1FCvaDwda90mDJmKO9Zm88dHhde5KacHGRFKPdS70l58GPcmnfkvrxjcG6COnOrGTb8wt4DUgcCjB2cLu8+PPwi9ctKXGlXqmRQs6KYARb8vEa7i7tGraN6ld92/rRP/PIpH50F6ZSS37LV6FrVDc7+nRc/bbFHJGh2BGPe58VuPGMdv2+v9OkOlEGKihc3q2yLfuKqcgC58jqzAqN0HfGmB5GqKiv5z1Vaten19TbzlFG63XSa6rG+kP0oU8+vdNmlSUZOV61/8iEzCj+OyQ5RDLzon5O5w3bmXEkj5JjZEk7EzCxdfryTZo32PKyN4EDHwGLOJp+rSikbxQ0LoI/zV/1tZLh0II8n8u4rJQ1crxG+9ZwihCns5sFAdMfxrD/vDRDbmOGAVUqnOq9gghUwcmDibXMvEY09yR8XxOa/tTtPew2R4ZgjNZVUVqNlNufxc5/yHGzxtucFR0V3jjv0ZEZu0NXyXI4cyB9HHF1fnVK7Rpn14b6rQB2loOHT9MXe0fCYkBmSXboN1cVrej9aENJ1WkXjb0cLQTFaV9AoT8NmFRJANpGUE/1wp79nwswEIkTAlry4iZkizYx4NiprH0gg2X/jGDJGaP5Js6PDaryNQdlc3w7wqinbWSZnlbZ57xkG9b6/Yh16GwDuCTEndb6AibHvteBvdYSWu/inatn9q8uvB1iVstRFbx1Nru86IDPfh7sL8IY5Iwmsi31ItTSJggDcIk2ef3SgctjlPRcbxQdhI8a6GNd6Qs92AYv6U1sYhHhnldfP8MB3hxLs77Awvc0bGU8fbU9bTf0vODJ6yc/18pisbSmYODdevhNCS7fNYSfhCo+WM5jr7yEXrGBCTFc+OJOicyr9XqMmzdvIKooZ2BGfIRDwVavOQyLrIinnntw+lRQvQrsrLpsn/Z+5PxIC2wzmlZOyKkQ1542Hf/olWSeDP1MSapP3Ms/TCyLVhhJI/j7jq5QpH7Jp9D5D/yKMRR1DWdtEHv+qmr1OjJFt7w+0Jz/X38S24PxO7ToG7z5lp3v0LlRWw5koPkPCpPpVNuRku4ABYumokNUc4YCvY5Zl3Z3Ku6wABky6wNc3gmS+KQuP7o2UgAcErcn/OvqOY/rKe0u+Pq6XBf2hsrHLmO7HNoXjVp4QKqwHdeWiJLPDMf4/865GT9YDE7H5E3pbgv/bA1S8RdK0w3DLktY+vmSYSeVoCWJmUqUztWehSdSGYvWuE5XwGJi4XbHjy/s9nFQZqmFzylpBiWMIYMFRB0upT3BVbm1/aUWucUdEvlCN9FKoavPnDTrCgSAvjtA4f7qTWh6x8IQ+Xdz6BFZccafUmvxonkTN2kKp2vAJzBKV+ZcPUHAxEr4H+FsnA1QcxvsMOzreToppN4sHFzxplfonhk8HYG37mWnJhOseP7PEqORX6VDqH09ohw3yXslzg7oXTQmfQajaSeZCZD0j1lVEEJbOyKOTo7bVCbjudnhZR5ukTkqfnDGCEt9hmfXHZMy1kZAQoKIQGCyXUDdOfC7FqQKyjkRvTEC4vh5xk/K1VII/ihOrTrHD8MfasRCRPexoiK4QaeDmOc/WxwNiFcjtT3QgT3cJIGyAnFVtysR7GR0oJYpW0+DIH1A6/cs8rvkYAGutWFFAkV0/fZFbEyM0XAZY8Kd5CnGa8Txxb4/6mKO/HDTUHXnHZ7t1HWBHmDq/XHNyDtqhVweqnukfLIh/X0j0FkntGciE+WQjqImMnG/JUdE1fuIIQ4xwfroCOoSRAfc/4s2mn3D9ik79p7bK9MZ3ZBGKCN7607jVsCECz74QYkMl9eez710ETnyCWTpr5hEKYddQJD1j/8UnmfJ28tkeQMwGwX6LnGvxCwgEN2WJPnzIoXEwvZjEt6yiyCG3yqy7AgfdRWCRqV7SLFfOjwmCy2gVtZwdFwtNzfGTf7z2qYtKMcdz+ciJ0v50eR6eDeJXPwBVWOR/SOhNAQ4w3TllZ+mQ4B3QwNHdDU5XdWkf+UMFglU1piI0hJCtP/UKKzA2o4vaaThrQP+aIW3rKPsW29pQKvaITxEp96GQCsrP1+C35M+924V1gZvtfYDAf/XbS2TEtIepm5zRhUzHxhneyG649AsBpF3WLTk3AVrBfT/1hwWne7M+eU32/6vVoM7xmf55/GRqgGzvvHzqk1+l3oj35FE52klQw3gSaJyVwwFsJH50Dx3yZnQ2H75aTrrQzhF3CEMYy3e0vvW0R4+0vk9U8Z0V7BIlufP5rVFAqc4ClxGCH7hpDrbon8GwZE7iJfZ7LPiDn+D7OjK4rJrgGtF3ZnT0ikhhPJ81GKUtShM+VCTR9tUhPXJwCwiIqCOuthcraEQG1zEEjJXF4BB1Ccm/xIWPm2xXldopWAB7sEZXBWloi5jG8yzBsCeG6oH/aFiP+9uiqkBmTr6na0I/zq19iyLvPsecOlYKcJgYMshAuV+51l95n5VTv1DPpCuPBDVTIwRzVNnF6CMwbgMEZzs8+l/WoufZvPmm0JIBTsh1wdI/CXUFBIjrcDHRCef6qicTuVHI1/AyrnUBCXnY/gdxbDubq+hd3dR5Wg05qVjeCnv/vWkcVFCwGXi+IRB+6BhY3X5rMBh7qWDmh/f4IMsksxwmUDdEdlFLaOCRJJ7d9VZSSVDyBPY/Mh4HUTH7DZcYPX/wTebNuM1v/ww/Ue9JztRCaNgtuUGXpBooSAd/yagiE0LWHexTMSjVPlV+J34mO+XNBA7Y0UY89/7hTDzA/qSM+HbutvHRAp1glAi67FxTwqDPEjg3BA72Mn1b1LVrP539HcPKfdAtdyvG3Adlx99i6OC+cx1OASWYxv5GxIZbcHPSFFo8QDOJm1rb5CWurWRpX6oDJNJVzUd+wB0LoTIKCArzugqmzsAY1+wCvjdichbixuA3Q4IUXT7Q+e2tUmOqFytay0IR35oc1Ql9SadLyVhwNxnX8v7LhC2AXCePdKZddJLFqaRF2l1Y6s8EamoyDhul4obx4sDgpvluVGjKq3PxneJoqK0OB52RJGDj/mz+Wlj1sMbV45Ih9ak4iUC61mRbeZuoUIpFB4gtYtxDWIzKbysmnkWZ2mzqHrNDUonOOBw+pbGT3nGdDC8FbUfEeHa/7RTiZZnX5ezgfpwXEnAaRanFZZOrzTaQQ/ejvbUG8wUWx3DHYXQ/LAdLnT5s7ZEDmtNmrwC7L9ncPd8nOA3Y8rRPy2AJL26q4LjWWqFAI3CzErknhCymBCs/iKU8vzpbMAn6SPMqcMEbiBFw3HJacqElBUtZPGsBWSEvVTGYoMMFDv2Ckk31m4cLrXq1/bKce+dx1FXu5pupNFKkDfV0yB0ClgRL2Lt//nNuGalnqMrXTXxwc9Gn2HkiqDjYNIh/dN81mkQr+lL8ER7lGAT5O2mlw0JKsvCTERtqd/WyJi3/vuh1cHdAehIUirUWkMdeHSRecYRsN/hnrCkvqxvC8iyHK7n1n3LbFoSJC9KFVRA18LEKY1eUGtDxKg5+MquoTUfQvtwZc6fXtQ7reUneXenJ5L7FFGsNcMB4XzAEGQ/nOBplbJtCtZv1bN8Y63Ijij3mBFcB6Gk3+7zTSynKx+J4n/WBwvUPImGGNWIhNzLM7iTTfcR1RNregeAGcpXnre3mCpvIwp050yMkt0oCW5aHtAYfSJoVg+JAfva8x0D8j3dgBoKbUjH9fa1Ste3t06tHltgqPUl2z3kDgWMtkTJGeOLiXbndkKe9vH3+qtgYCn5bR/d5TpWaXjXr7fJ4bBmXFUNPC+aiu2QZ0Q16M7oKgNK2I/+6F7RGI6BmHlZTHJ3is2TKulKu4iHONLBPwqzHg+VtX0yfkN8eDU47GyjgDQAyRe/VkBj6z0VR5bf96ouc7BBLlCVPuIt6jyzgw4We2D8bbMW/NAch6qBd+3X/FIPyXTQwpISduwDKWDjzvDhwENn4NeIiIgdjtswiDwlWQbB2Uy29AFf6XDwNOh5koXD8A47b80XDj5auR36ba/sNIgHfCg1uE6s3hTUZFV/DEKirXTQ1R7Y1sUUNIR94mUfomCBc20whkn5CynWNVRoMzkjETLlkYKkbGUF+C2X0HhM82sa4D8CFxQcJfSbto6WGNQkI2ye0GhsHB5pamytx/Qk6Tk54w8VYU8JHYkoM9mCVPNpQC21Asbtv4qDgshtfm7/5aAD0fDzen3o8OWNt5I4bEKyELdK4rCM44QzgN+bk9FoT2VwFdNWETTKfcumiQzpINkA6lJRspyQvasp3ixWdoGCbdXeTi46fXZnQfU+AEp2M36O4JlzQOiTfzBNGIYUsgr47k9K8z7A0xcvHknszm+rzB2uIIi6G/GGEzgy84sofrLD0G0SwX/pexLeZBNV2RwKOW9e8hk+7QyDTKjJArNvw4XiAMcuSpvpn0+kt5SOwtJRnWHR5nVW6u63FcYkLSurMcCVb0FaNA5HMq3x9vGPsxI1PZVJVm5fGzgLrZtv5J83QaN8cFwFzpofGciKDCzcrrXz2oLat9xdxp9VLXYV5E24ynQ86/E+fKmTW/f92Ypg11CxjVViEgwgYCngKm3j4EQlqh/cxy75bFqW62/yR+yn+LV2N+p6lKjVE9vaeoWmqNUwh+WQvlXHR/YohVkRCxXMv98nIg9RbNouHf+WFiUcdmve2fYVPeGq1FVIUNw6EDW7tJiRM1HFt344mE2PFsheEKjGwbaf5EWXAaS2+G4tHlOZLjZpNE15Mhz8KRl/b/mBVfwgUSUkWGtECoz3KQoXsQDHvacGYn4sC69bV8uQTiFkp7eyW2dzVRnW+aZdoEon3EHld0NriNfEGcEgHonPHZKDae/uauco1SY8hGPRy7mv0nnYd+64P8P/JxLHzrVX5Gy66DmueLPDG+UkHBDSHsp/0W5e2MKaeEgudIU8ZNJNqktjMVEWwt8HdlhAH3B9vjVAAU/zk0llPTIr4ENs8eQ+XOuWkGwABQixWgxm5vTPkWshlE+hvzBO6EuFMpKPmpgz6U0GuZLylWasJtSMcAm4kOW093KoontqKV2Wd57z8mIZmWXl6QDraFStKtibNJE7qggCQ8gb3usQjpNKMw57udwDKvudP1+N4laTEFYBc+NK1yIL6XIRy7n644MjFjHi4dxQ08Kv5UzFPz5brPm4Gs2/IFNYfaOiRJJZbYuckuBnQx3k6eOmVfjxF+JdX2WxHqMZ2jHq4GduCbM8ba4gZOd0Dz41BvYVTLuPKpSABFXcYPBDoHFlA/+8g3Udombkip2subOqaXkhTeiox+zfhKN4O1taHZzaLNq2gAYgvYmLWj7TGaTaeEpYtPjO1Y3HFxi5wHJjkUJuySHqFA1TuXZnNSdJoVSOxJN4RuYDei9KXFsCungvgSrrg3sY9+1IsqNCdbCY8ZXh5uQL+WnNkZwQdaopuJDRF+RO4laI1ODXiMHJaD02p4LGpyFGJ1Fx4oTYCz7A4BtmgDmwmfpEhg4e4WtkxPKDpWJJrB8KR1argp07smb64EN4TTJi8syfsj6B5hJRHRCYaGmDVvYEH03II9IUb6ELqry7K7fVdK5xGRzT0SxUVZE0IJssr5XcE9y/xd1QV5UoEF9GCYxrNz5efOIA4lnmuLqQcajNSAFmjP0EMarQTgMGqqZWIdVhs0k4vk4r1q9+BL2IA6h0xPSv2sL8aL/cKiPF7ldb+Y6bZ+LwLA9Kf0fh6E8ED3puofHUcsuR60vwli0sBs3m5iHvrLSV40hSUqt5xCqS42Df56aNCdGpN/dN4kccCLFZvwDQWDfFLlWBm5SniHlDmgF9e7abfQ4aJRZ9qaQVJy2eFTNF2rDWBYUbpHipleNz67112ctbVpHDzfK9yYRjlWZGN0U6044Q8eHZ3dRCadGLhWKyncxJAkPSHPfl69/L5xaL5TvbuirIOBZ13UWXLr1KqE/jDFGgaAZdBX+n/pMho7kGUU55r6slOyMiCeltrISFXzA3Du6EmWSxuDUZnWILukYT8bWH/vc6MihlwHcPdw2w6f3Mmy316zxQMukF49Fhth2ThEN2JxaqZXtLYTOlFZF8S02mngPTY3RPHe90ROIzWygg8NUTiE5DJBJXywgcDTk0LcDd4wXT/ZfiTxgD9rz8E1jEtNFYysTvJcZQo8EIfB2Jfx4rSgpxsSrwZAc4KU2Nwhco4wTfnt160nVorwVeGj9Wm7LlEzxiPu70rSXLY0gKteRVOZx6qZxNjAvr6MKTPDAJgjBZzutCuSjCj13Ifaze11VAyMcCMg1BNfaGlKcsuz3RwmXSd9/hKzhzIRVf6Xwr4BTjk=