We’re going to continue with the code we wrote in the previous lab. Our app sets up a pipeline to load the Cleveland CAD dataset and clean up the data using several feature engineering techniques.
So all that remains is to append a step to the end of the pipeline to train a binary classification model on the data.
...
9Ia2zhyEWuqfChcoOOlb9JYb5m5/yuswnclysLFRvGSjN3U6QAJRrIuqbTwxOn5PzhtPQCs2kffyM0ZC99j4o2oDGNZNdaknBSbTTL/uHAoWzdJIooqo5o9cc3/tueWhYAsju5x2gLOckhJam/IEUZQYnQgsqzZVhYsGj73pCcsji8QmA8S3rhfx+d5asWLfnsXqiak1KoBEHmOxxA9H6z6/7XgvO+wXLtpwBmRAfYqg/ccg9HDwGqSwnljEXslPB6h/QK/bdmxGFm1ot3dFeAWr0/4I222E1zS+/y/B6WzY+nXuJijfQoYL7uTwdaUoXFY/cerWQO29yv82uOMlCeaLO4C5flzNIfvL0lPRbWSLmilz0jZuE/CLv6me3hk6xTkNOCUUqvM4aqmkxxE5VnWxf8ktD6JkEGGSJGAL/voOgqpPPx/NgsfGQ5j6toCcemku8HhGdilWQiWtU6veBsIUA5eN/vuZvcr69Dw12vy5K5sIkBgcYg44UtsQiQqFKSlocH0ku87tNrT83G0nwxaeNalxjOonXlXC9IcEZhRpqAf7p1AkaEc/MnvWZdY1rflFUDfJUxyrLRklupsuKkrK+3hxvF9f0BjrWwXcKx/FR8NRnrhcuvarZaYoKWr/ITibvvSqSxzZIJetpKvg/IIVgyJLSgNc+ENhADakTnY6Vgvw7HY2QvdD9HlSdcU0aVM/q17/mGzNyZr3amUuzye3mwZG3OMHB1yHKmlym0gjlG4aURbTwHDKevQ4ygOmZZQRaMPWIStVR0D3qlc96vLgN3a7+cSZ8W3Bct+AgCZYr9zXVw7l4yEMowSkBACH9afACsUBMWqlnT7HymCWTpzrT+1w9ZzKj8BMxuHnnj8Nl9q+CodY26Wx76n62pXVIwzHW6ol8zFTxyyWzo1aOTnYiZzMB9xNwo72DoHybqiD3UuWA9EC7PnCQhOYSQJwluk0DpkKFAElOeFAdYA0/0qpj5Cb9aOjFq2F5Of2pIvqlUhJmGY97UwExndXwzymrt+tRngM3vfeFQKLGCDsn3upb7OMFZX6E29WOdZkY99knNkDjS+7fXW9dcRuSPkKqjUwlyteB1YEHm93wXEYprF/SZVJXu0XM2eGaOiajyu2sp6vtr++U/xN7H7w31RCaCaF+AhxNlpt3e+9ok5Q92djDlIuGeTxJntJ61nUKO5prxqVqhLU98BmZGtAyu2s1vhPLKFhuUMZInUKPjxKKJTYlgWgGqUUa2wiuNjw78WF+997R+nsMftyXdIAzlLXdzfiZOZgcekBauPQTxL0GgZjmSlTLJUIIeuyaM9aqNeAKq9/TjQaHelLBFdYyvBgX0V88Q/SV4C/U+5OgdWQ0Yel3ikSnk1VCWwQCHj5owmc8cNrn00VWohekRBojDrwxPMdX+Hvg5SIY7/KhZYs0gnC+OjXkJu1IIhbsG4NZtW4cZawW+/YJr5Sox6G6NdEhoUX4w7lDwuNxn3ZEOVq+vhK+ZwAWo9KMoyTKa5V5P9xoOSOE6OHsi2vnjDvwxB6xFVnTSAD3hVB7oWrSC6PzJpnNnC74uaH+xBoSS84P6eNdAcu9Thj1ynXDmDE+YinCjzRKTQND7TOCU6hvLrs8elHlT6f0CdaJF47nKtvzS2vKteEBsRf148ByewVsD3InZiVKmSmwTVfUeKfYCoVhkgAunQ0963BA3eczktG8aJwtQipATox6HIvCLrrZup78XFAQeVC6IF4ed1IHjsD0K1fcEg8l00KR/kxvwcFUhti5ivLVl/4+fjGrDZVV82HvZz2idQkBECQhDQQxpIZYfDQVAtcoc5GRAzyfFArH5zSdJHSL3rbsXQGgMZTXd1xQeUtDVtHf06KbuUBTrxIBUFji7J7oBqgDlV58pPfx9hC5eyiepVj6f77zvb4S3Rd0mYvCXHyLOp1awfeWmI818sDgCL+SJ3lWzFzQvdZ77b90+KMq4Kezij+0X5AqV0vdLM5PicR6COE9HE4UymswAWQ0XvuQyrm73EGo09co/i4ZAfzLiAlzVo2LVTnUw4q+SeBPh0hel/NLMw3sW4qfMSqeanhwizuATqyhUVv12OpmVFUXk16DCjfssdSHW3SqMN9LOZaM+6RD3/zVzW3zEaQpXNVMH5siOfbIDHupVv6SVx7t4+oiQXaR6hf2RjsUcR7e9De5Qn+3QVVv0FU4PiOtd0WqTgcqheHtTuYDl7vZQpfkgfaYMvQqs2NVQcS33YZV40ojWhdWYjqY/hSZUCCWkgtpi7wTK9DsTv46raQiI/54VJLxRuib7Emq9H0hSQ/wGNDlpkAsVhB4z6Owjcj+wlG3CCG07S1fGA58zD6qVwDy4o38PvBk7xKmcgSuR70w2MfGDfjj5rQ6mqcMCJYbya4uIx5Jd6asKORFQO80dNWGiMDY/5yKXkiX71us5Wz3oqEApUfC4gKC8Z6LAwb2XbArNcc0MjE1kAT4kA0qSbVAYMVs3/11S5eeGVdKpRJnt4z4lJOgaIBA+qztVASM6/LgtA3gKHGZtZbdxrZUuL3x2+qz45bQ2ujOx7gXKe1n1AzOm/40i+XqYw/4SwQwChuT4/shW2AiqSpL2M72k67NFRzCG7gfoDASz7+KGgTe25SogyrE5vC8MUJxhAYd+eUa4BOeXa91PeeNYjuhyVDp2CgYw1lNv2DXq9B11L/3rg2KKvQRO2wAeaVbAFRV5gkE8Xgu/7NKMwo34DoKQRzqwMj+qoypUkKm0m2673TLYp4snM+J7nNcVwndbtSNarZ1nOv6ZBg+4S0Avj/m594zrWjAy0wa/gnnCoW5VruNQX+Zw2XnPqurwgJlhN7RyTkDBfFe789sIT3ADQvdISFYvY869a0p+3OMKxlgzOewYK3q+JCimJnNfiBZ1prPEnSK1CGA61uVSIUhZcG/i2WZeoWlnnnsFBSvZYwFznEDa4Y8C/onONrTsnC12P+a0LurGYPQAOJgAKMU7HVXqqkCaKvSTXtUtVLm4zd5VozwyIBga9tzHsOzWGbTtDZwco6UbZLwphG3kS46y3Rvu3oSDpXhJ1DmrbkmHG+9aJNlm6OcYNQ0Qf/MftShSjD/VMeIkfcrt2zP8EZ2xloD03uH7riHLC1vZeOn1x7npFoiOZuycFop6MdxHMP4rxCg9QZInlPYVuyZBMr8tNO4OdZaixo1b9af3SRsy5hQ+ZAVQwrdXDHz++P4yMvr2BwKRdflttdxvmzh7Xl797aI/EZHepGcY++s3E0wauz+ZML3lV2hgp+CEP/4Pv4L4q973HRZfHdJ28KuYrghBZFhia+83VWe/kVJbcOKE5RJ+0YE2BDjL6u1oULofj0U/lIFm3Rc2YcbHRmov/KLgSmo+AIuHDv0sIWvZJzruzKHKx5AxNFAG83Ehm4eQ0UOm6z5U8DT7aVn/rPPDmabsB4aRsWKsR1HAQW5MjaUWjUq86B6308I2p/VcT6fkqduGPTrjdpQGGQNW96oE54D58ij587S6WBqKdjUyfQREIdoSvvf9bKh4qJfC61V4+LP4YxS3doqNgnchp8M4hKxnYPO6lNB2S0TKe6XP6ET8hNfpn5gVZiyiIDOQ3ad0ZmljybiKlXQVpMv5TZTU07TMGcDmi2R1QEkH1TN/8LU52A560Z5kHFILDm3yFE0okT2ocUuXga+wV8jSu40rlFhNBAWKQ0Ijc+lg9C93L+dr/QiPGWRkC37CdvWOZ8suMVviMIUiGRjtSr72+f++aRDCerhpLAPc7/bh5HoJutZ9CMsWj4YfudfKZjVEYG8+wS8EDNNym3B1FnqDB5SraCli3LtSB2qgbesjBRiRMIOXarbqDncJYVTJDIWOHhibyItPWJPzOtiTSqEhfkgxn49bRBWJ9naiRQWH3/lvXBNFcL4iEfaUIy3nirelEK1djz9UVQMJp1Dm9zJIhZwXhRbrlFMbrWysTjckFVhzSap6heUKPUtaBrUFNAePC1UQMW1MumDvV3Mj/l/kv13xXAajP03wZR07PW+qTSI3t+EpLV8Z9qDq5TPmmUFjFhb7qUbhN6zx9qLBE1gmgCTpd99heOHGzQOfOXO3dYc4BOkOS+RmxluCtAeeqU8PsqYwLRYg4U4Hk8Ah/9JPVF+LuseBL3rrEDcfeF5cwSVDtjDd5vGD99s4u8Fiddins+L3PERJ3C97Kjo61RycUaS0gyBQ0GGL6kdJG/danph4geBSVtMkrgsZoML4NjtNkV73g0dsyjXWH/4zLSjLYyK2ASxzGuMSjZS7nAh+wyUcNpHoyi1jsIcEbhmiOVgZfEolLeJgeeup+1STAMa2rXvd9g50cT/CFOG2UT6JsmtSzoT2SSjQA53I6ergf9z5Pv++X+b6RrKqIqvM8w1lq1NICBn6o499TGNdnkBOE0CpjTQqv6EfveILcDxi9HPLNttBCAZ6K2XuixjZQun8Q6ghNh00HL2PuXRmM8x8/E9qzBaXJvulNDXRoQXAck7zGnJ3yoiw2de09QuTmNe63B9czisD++UJqD2AvrWCrWAKD5SwmIMkRo6S/iF/vHoUVQYFk0jKqty/WWA27dE7/mFdqO02o2cQhMbdKDKRYtciZgnkGUezYeMfjOA4rHGCvF23mGAmP4OP38skOOQSRsU2DvZpKIuIz2yoeRen7aa4L+K0WmCbSjYsBKTvRY5KIlmSYF6avN7+t8FbaYoHkwc5lJz0c5HOMamXO0q63aDyx3sQoeMOOG6axuV+W1pjgLYnkfnzYvE0ngqYzbscTD3FUqPRinAeQ1gztfEjMdmBb3HOIHkL+QyPFd5qvxVAsCSUMcVR20n5iPNJ7IT5h+ccpfq511NpTOk1tSH9Gdy77ucRevOFZQtA6JeU9fDsytcaIzjxkcN9XwLSIq7KgP9F5NUFZdZP8sfHdBc+LIFDAZIl9K7iJfTObl7YCWdrNL/Z7onFNRnMe5G4PwAKt3ViLw87HW/PE/57krss6J97WZANg+ifzkkk3TZoo+DKCuRUagUcPFtteDj6A46sg0b145906856bLiZIyHnuBD/upyDNMbjD/lrkhkks7iB/JUwAEQRkjNMs0uAtIbNIb4CXTOUraUmPB/2zllEdAm9Cc6WVnPhGE6g+CKR0HJcrBFC3BBn45EYR7kwyaWWcNQXlyQOHVE5wP6creyzvMAcUgoStcxx/ZWTUiCZbVB8iFAEk7gEg5rNhMI52DUrPtpaEfcDh/VqnSw5gRf+A4HntopiQekuAxE/E1jP7+iCQAgZiEt3mR6N6UXV9ah5lGinLlHXiEYxRJlOicn0t5v8dJkpLm0dKuSR3LpD7QUR9P4cyveWwOIhxNnC8vOldgFW3Xg18QpGhXcrchLERxCWw1B+lpVE3matZ4YZy8tCy7xYSYEByD3kTerYnck2WiDJJVXLZ6QRVif6n0mNKJ+8kZ2kyIRasI7mU+BcAzNoAynGpmtGJ1GBj7Bxh//LIeJ7VSzj4S3UZBnTGv4IepkrlnH/Gl0VAfemCYJ4y7JfJ4aEo9O8yP4HJN/EQl4UOy4RWS2mOi4NAJc6o1wGcgl+n5KBMj2tPZRNf95SaIYUEzf0BKZf9MAk5fKIKQWfWaUgQqyNKGgVewh2s7sA8jjJ583UATKdHXkpfxHSE67euX+w0c4coFl+vGkXRRNuxdaoQVViepg8kxF1pi5SIy8EZ1/6O2SgYmauBMSbhbYWqPIxfEQGCGWKzS+7VUfdVjv2k2JehiTzyhuH38WdjeboK9gFQyie+B/rwCBF1DTL2Zw/v1Sk5zcP6TetvYt8nqY3CpllO3+L9+Sg/naTNjlmIppyZiKf2o/N7Ezj8QAlvQojEjBVOyzKqgU8IwGkL7S5giX2K6Z57lvyIQ0uWMhlg6gjWdwfvaYE1uNhxLRKPolZFXu3baMADq3KH6XpxFDGGKoaeDQEx921uWrHkpQEubp3Yxdf5mfnHPJEWlDlXiRdZn4rDxWgqxgMaN5qnvLUoXZaSJyOtw3arLIPh7qCO+qJ+tLzGUdtcZA1MG9qH6hoRWZXblY3xaLDau0AFAK1VwdByYLHTjvRMqgtWFywfKBkMTYTEYGQT62mZ/Apxb1PMYTESKuj80XqKvvder69hN1021DGHsRBMuLglxCHX8iVQfNuSV/KBdRXCMiWglbaqM6IwTmjHk6Hd/v8hpu1IhfKD2ynwQlmGyhniRkeBDVkpma6dEP5EJ8aBsv8qb4lxy2a8OpDQBKetaRHT8MDaJEx8OKxVbUxAQ4cawB5ckBUPxJW58JHHurj0Lv8deG3uj6vA77JZ+2ILWj6CEaNLFDZCpIUo0sBRCCNdj7jW7VMTgnUlX6eZdCyFkPtmW8+se5CllxqWkp4Qd9/hpGxw1QgLKlOyuaQdHsuntHGPABN37n8fD1SQamAb6PRdDfKTWEjpCbrF1HdeevYXrG8Um/K+4xiw3vmRDY9cyaJs6yBBbo7WNJ9R41une9nkcnNMWcGgz/N32N++5Km9/MKITpl/HjVGJ7wkAv3eceNyDcvbt/5PxO4NItsNeB/MeeYPzDENCJCJ+M4qFmth4asEhefA=