Now let’s start designing the ML.NET data transformation pipeline. This is the sequence of feature engineering steps that will transform the dataset into something suitable for a machine learning algorithm to train on.
...
9Ia2zhyEWuqfChcoOOlb9JYb5m5/yuswnclysLFRvGSjN3U6QAJRrIuqbTwxOn5PzhtPQCs2kffyM0ZC99j4o+Z+HyDIxSqAxYi1hDVyBGJ6w/LlbiI0vi6PpWcifsHNFWHujktWIY1YrM3Pw09n/zjfJq9ZThG1zOgB/2wEWGoCHE8tHMaFPVH6MKZDkShbVUhS+j4tV8FCkLE2vL1/aEgxAgjLb9pFOudowuBqGUmD0qlvjEdUP/Fuh4vvJ5OJfzGgK6nZcyCD3d7u1V3Jjiorhg8ts30QIzUKKmRREtK2cEpett1huxiKCF9AXYkCf81CkC+ZIyIFUSfGh1jTfEtntJFA+WQ/5K3nJtVJvgaZCAPjeCL3aRejlQyLYUv+oYGmFcVViMPoRkllHzhHm/ZMtQFnIaRcg6FQ1l2lkmTTZK33E4PJKZZgLKxwRCqBKlTLBE41AqxFuQcuPBIjI8ai2IPd7/nQVLSsvIcoLK1RO9Z0aG2dvJzWuuwOqLq+BAn127IVuZrqsUpFaXisHV2TJosqPFHgampi6eCAGEwE1ePQj+XzVsT1wNjY3Nw29xYD9YHg8A6x3i+vxERNMWGLCtac+FASKX0X1ErQbEv1F9DLeUQ5/bCIpsvOvhcK9/bLNgRSKlnJ7xLjgc+dywnWSxktebKQLA8EpKLfh3AMPzsrBad8ng1ITf6azE9SacAySsGj/5muOAjJVdl5/vo8KAdtUdohaiOaNXuZnA9wS8kWZ7eSUl5OS4ep2K49pGswqy4XYmcZrVb/Sixz3Pahf/EfRFNWR5dRn8Y1JKWGpJ3PHsDqYQyCS26qxHsQC8AQCa4bCP3jc8LPSKqrxAH2J3HB2OtQf1sBknj2VZQHNDnxVs3Z1Yenb5bqI/2Ehef9VUizioc03oFkmb1TZNH8VqTeQonhjYJvZARyT0xqqRSww3X/NF2B3qQSMuCPz6MsZMg2waKznaBrfntniAOrQWDJ/BrE6PmCPNHCofPqN+MmYStN3m6gDASgI0JGkAl66PtIhMCr8GpOYZdchTYm0qvSrRe0MVHf5NSp9z8/wDSsicv7KrWdPMWy2UAlUyTDahb7VsDXHx9G5Ct5/gTTPuaM3zbajMckb6GlYQI8AhtTFs1lCv5QVH8m3hh64Z6wrEq9ITK9a97GWXcvkJxk+9WbRj4ZFU0MOavm5qCEVOTdcPR63K1HxRjBnh77YyPqsivZIZV7vTzfDf4rA4NzvLOHuIdsnMrSqJGzOMxtnBpSdUfUKsFW4zxHO1yU0DTVo1BQnLPPAX6/Qf19lTrd2QC+s7rrBT02ybYWtSb8/lLJMXcZbpY0cBtXqNpyDYY7s/5gNsuoWyJNXQ/dUApqYlHXPNDEHBsOa+ei8VnyT7FTGAEjMMUoAnvbGQpbTHl4QzVS01JBSRZuc4rubByUMwdIe32EJnQjZ6tz7MruOOEbHjL+P7z7I+aYYu7yeg1uCiWUfpvEDDanQg+OpXdsleDWPunhUGAQACGmOW0SfBrs56gb6EE7MwTo9A7EVtoFJFsgFtMOSW1JzAbZg13WV/1f/ZqIROdhBZUfGdLce26JwMf3bJpAAjsSPa0eXcGMyY3iu3rdFflDOD6gRaxeVxNCBG0Mb+pyCpMkU/VXEdpLRDx4cZFVdKlE45GVHyvqV0EnJvuTgbrdr2WKAF6rl84lOaZK6AGd/ZwFSafikSgn/mEyyuiZDmajIbl8dTfd1q3R7F2L/Sj30nfMwXHdHfi+9SJC4ixcWxy2hpWFCEbauMaB1U34tGmsVSSo1fATRSxRETvY056NIZLsQ0Bf7/iwc07XXhZojpnKOKHzGUIt4RciVOYhuOfXiNv9WnY/v1SZj7qkjNjYuCdSig0YYguZZGAL5A7/eUS54D2L5kFU4K2nA4M6CNysA3mYy08URF3mN3kI6I4c2nB7F13jLCsAPJCvyk+7ctO+dqZsKmj1m1YPCUG1nFcY9mq+/YeGrr3KdUCO9B1UkqBgF6QLVgQ8rr85cG5F855UTe5pv6mkyNJnru9f93vv+c7/XkIPQqpqhkTWB1yoWPqbpJOvT7ABUmq+koR4B0Wh5LoLXxN+mBAy1FMZWInZaTFLeIf4ttvtjMvmG5GxPIcq+srNnRJziYi0l870rZbx/VL0WIPuS6Sjsd6YE1/Qgw8nMLOLg2bj+QxzLUnNRVl1aMhbBuzAXFgdzN2LwGkSP2oE4tD3oW7ywFOZ2owCFv6qhebWOpcJr//39Orer3vf/s3Hvb3rzWoU+NY2jjJSvJfhc11n/v9F4IURXKRXn8nXS29/5Tz7nO436tNdzgjiNMkfz5uWqFoOIQ8AOlXYPFgERPmU3gTXrPKlMUpkY6nvGDglKqmzje4CPqM5xLpCxLjOBWCDHlkGmIOcCmsmC8rda0fZiAKwQCGthe/yaR/6FqHPk5Ik41KN82hijvnP5a5rdR1FMV8f/d/ArQvDAorR+gQthcWEhiydEdJ5WVdA76fZiIMt7J5c0Lgk14Kqt1fnqZ9NTIVtCwEzfUmylKKXKqZuQBjI0jaaIHLjILbckQ6DyuoU83Dozxtp3wVjL+TilruQSjJerDeGTk6K6gHOENKspl0khYz705D1DI9jxman9KeBRFMhCoP2p5w+wiR3M0HGDc6LA0y8w+XA/tbAb2H4i94YYenCObs2oiN4WivEjfMgd39ruDlrdF1aOgxdRm2I+9JIn2JAl3tKV8VkH4miKm5l9bErrRkYODj8qMIHfF5t95p+4L41PmMNXsGSP2SqBpjKuiSy+81EsITVEkZJj9BXe1+l3nEeLenKse7JoHa4HoQ0K28RZNLVFRqUR5I8gpOmXkJlvfQPl7qtbtQMkYAY2WGCtP/erycVa/cbEg+A+uKiA9tmzd3x1xP7k6NJ9Eyq0q8a9DaIo2V0gruUABsAvmcWoEfhSUSNstZlzWPAo7YxAxwPKVsgVwTvNvazikBc6hBl4aEK8rP4C+TJ0KDyhJgVUBzMMlZ3VWQQuWKEdRtOPs+PScI8vQJLdCSOPu2xwezP2fI6QrTOCEGqRaMGanAtm9nB6t8flWUp/t0SzpvGkAdaHZSVkg0sFynMabyIky/Hv+5H8F5GTmZgzhV6ZmBlNshGV4Zjpy/mf9y2VGnAmmF1dxLavIrWtc2zQnS7z8ysndUVvg+UbVrNQCQJpD/tFisIhbm5tIMu8t71yC2kSxVxF02bH1h+r1wIUs5KOFnFE1OQOj+wp62kQCOiP77HOJaRVxTOsD3ul71SAnxa+iY5iNfTNOxRXutfkVtK7lVXilTAey9y0RxNYpMXQzwhSyd7usj7eQDdx6hO7t23E4wOeWVgL5xk5WjEEok515ej/ERvWkaihch+wuAYiLtQ1T2UogISXFcCXEUFsBkXM6jtIZfT1DZunvPieXFVu1acXx/ZAz0G0HlQiejEeAucDTmdTrfMUD5uBrgPGVcsIfaJZRbv7LsqN0+EnUYWwDGz6MiWploBDQbF6VKIwGFB+61wjCoHrl8JhRV05w/QTWUQP/+JFCo94lfDOCiXhF22ocgoxa7DDGiT/6Qyb0g6Oq3N6o0MC6vyFa+itexsdoKw4602ebE76ytbKZxfQwgVSR9OX7ueUB3T0ZA7/EZrityluO/lnGQIqCPu0wMtu+ZIvhFNa+KkWDIWxRD2s5ganTRSAmf1VlR5cGu60yYphMrOCfA2XfY8LBTg0MJqsviaos/HSL+NjYQrgV5J+jwEyQLjPghIlRMwjjADhnE4UFVtUEkt4YRuP8G3/9df8JEoG3BYbclVH3yPU2sPn8GuIp2xZYSdK8e+96efkpHL/NUjZYQUqGq2RpGEWPjfSXsUFtDH2B07e+tjmPY4RQPDsgDH2kfg4ss5OpIELLuGkxYZQvtLnLPO71oMwCZqcj8q3jHmmAkf9ESMAlEuYVd2hpHiho2FTYzxBwgMCkGdZCl6dt5jQTtsag8UM4eqFWyRJKaslm8SMJsc8WVdJakzt7D7EtbZOYpPnBQSIIMhLlf5UWumQaybYg0Bl+FxAapkZfRTqHofs3jQuQohEbvZCUyqEOfu2nsWlPB4KmrgQeegabnDla69MKZI8HztP/vV9vOVJenMa/IpiCymqOTdDkp/C+qG+7fYgHAC3ZyiHlgreByITLjGsV5DqpG/L1qD0DUKiMKcMy+6hP2yVWJRBDYfDV13itoehW4hCd/ZKfvHzgNxIqMCwDbBGEtgi3cPW3Iv7acwsGLToVTVbzzbTcAgudRZS/96niqqwiRdFIboLH6aGqP+w2ExpT9XA7YMSAf2gfeGVVpOR7rPyq7PEOR+OvG4wfF8gKcE9Mw6M+MrZ0TR8FqooTcoBvSlhoY0ms7JOpp2jmlnnMKesrj0VWR+OWMOZ6WnYytz8udOSbc+RZtiV1+N6Dk1W59axZWUroB6ynIOu+JjEW1DxJTe3kpDaUSs+PcCtAlyya1LZv22Qt1msDNoI6z0Yg0CwAZKKqEMVj8+n8OF3McTL2RGKZgdkB+wiyQnToFM4C8niGdCbTYNvH6REEZG/KOZAqMFFZaPPGShjGVXBa9Sidk9cuDU5vf11dpVHms96b7dEPUb07Bhm5m/7M8IqX5NDzCU/GQhLBRTpf5cwfD7LCJCAsODmIsAKUavo+wfqv67IHgcGAjkGtlxTfVVPaAng+aaHfDnXsfuGXZILtuczJY9mBNI1UipVnqrQbq6wfzbeNXnHHsUWminvnSScx/nigfwwnPudbYwmK/sIzOvcn1JkkImxFett8oZ8jPGg9QCvMtgmkU2OUAVAkjNupyryOv2EBbWi6yGg0f+E46qRABWqvgUx7vdybq8eYxXbONuNk5XYru1FD0KBhmLsax1tmSf7z19+Begqgy6milAhuaKrAF6v2ToBW+GksQmiLXYIHWhzh8gPjsvMHgRQrZUHZu5j7+DT/x/rlSTZdRoPwCt93xpnt+gJOmRLyWiyiCA9gQQat4Cx5lfv5fKr4bmm1y9ZrJ/iHOIy2WNZxSnqS5cHpOA67BnPJF2g3mmZAPIBNu0Fd9vlZZB3AFFsAZHbIBrLErMasPoLjx2CD4ei/naowqxZQR9bEzz2UIERgjvUsEY7D500hcPdElzqDdp6BbuBraggATRqHoCKdu8/LSfqVFLVR7nF6k6oTzYYBP7YnMVhhPfzEwcg6tURxztB8xYHoCB6DQUU6L60mnO8igQcQUJLW8N/yFZn0OGvgP/PPMuOpz455FAyl+SkhW5ar0L9s+bSySDtziUPujoLIVEGutlEXfuvkX5X2A+W5kUEv2l8FaMO75SA8UtCEr7DBPHKR3eo7YJ7/xMxGioQKBSe7KzhUmCDlDKDxc+Hs5/hhYMpZNzQFj8RN3BCNg84m79ckUi+IqtYNiQNHTQtia8Vmdvrbl2zzMaWQUUo794+cht4CCdfVENFILTWlI/mX+8ehNQDBoO5HLgICoYcQa2hcgBaOhp2AA1ZWi6uu+KwBdpCYIc28kgCr/I+UrPwH/BmasJ9f0jmSmgzu0itEvnK2sFXYtdV9ryspkarV7EJaJWxJ2kMSY/1kT4ZJ1Wl2IpSyHgkG8D1UImK2XY3O6Ty/2cAU+r14jB1Nj3h6+fmlku3Z0JqmryzVzG2lVmAeN+GfSwsybVGVCZz9ctSNDnVzw9CMnT5oHSzJSz9Si/OFBZRpAw3yWqGkuweVPHa4rowczG7au4gH+eksb+5brJoxgBZW30rFYzJkxLiuvbHbAC/p7W5/36KPLUYLiod/lbxo5ucUxFO1e6Wkjh3m59Bgs5OFRyJdjGKAwFvk50bgLpkKVuGM4+zbwljPJdw3ve2gB4S7iT8siS2XetDKo1juoSfVmo4jf7zSQptuxIJIDx0vdE6pS4fB0A/XI/159XRHi/1d+ENp2Kxlklt2K1BlU7Vrpvvd8GxwqBdCRx8ZI6vK6pW1inM8mY8MDPN3Wx4bT4c5+5qV9aFc6fMFJclA2z9c3H7IQEFNnB+DutviBf0IxmT1LE4/bfeJqborndZRWv/namLP37ENEEtTwI2WQZd0VehdpiXI8BIyyMo3fHPiM2vrIoPi9lAN6s60iVdIftTzGqq/DjTOwDbHUhHllq9Ur7dluza5+Gk3ykx9WSj5giXpenwUswgGJ1RV5U7ktYlQKCBvRjeww2R9qzBxH6+ER0Uo6SdjUZe7b6rNpc1Zq6YUPkBAJM3M+JH4mQp869Q2XDovH5aJydJo9cEXN7XVloJxtTRNKZoR7FS/WA3oCM3y8zf8LMQ3FQp8cLU/5oCAIz9RJya0OvRh7tQQLVSDenGzu3jJtmciJLa/4l6Vny5CKnUdzR+DwelbfmXQMoAW03J6iNbTwdowy5hS48ZjhxBDngbh7z7zB1bynJsLs+n4DzXnnQ4aflpUkxK+q4uwsBNxq9Voz4fhOBL/naJ3os9jwzyyHE4dwPPvpna89b8r6FUQJG4+SyiGvrnPp7Dsk9xsdr0ibQkgGI412QeZWPX8KXQq0Ucxqbn8oaZPXoT2yeHydyzOcVDPFX7D3NFwuFnNyaYNHX2XhRUqTVgpUGp0qXS4pMi8cvn5pu3H4uHi7q9AKIjVut2hF0uL48oiFAbplwBA2V4x1DSA9oaYzFu+ZOiKDStdfvq2qY0PXo2Eggur965FSMQAYWZs0yq5DfNon39FCljr89PH0HQtbHNNicB6XMtFg6hWNxTAQzsZeh6yQM5pYDUN2AQFdlrRX9lSzQ4ihBFyCuFfrGOuiT/GPFsgkdpCfFUf7qaZkYRx+qv1WOB6ntULXlXrfS9lCDUQVhqtF9c/JbJxZ7ftPpSR/Wd7tlNAqFUAe2TqwKvraU4nTaRlONqD6iknvAygNlZp9Ai3ayLcRO8gosHopsvSp3+GpLy6uXVhDsjxNvfelapKSUX9UB29VdeqjxdiBUnDTizIolmNu7gMzENL4GBrxwt54wpOvdDUWPwOBFjA7V6WNEqu9IvAVo0BjvR7EIPagRE67ng1M76f2aq78wHFTNybIPCBPTQ/zjJEIIJQ51o8f7khRVfvMWXWAuYoL/akPR2L3WwQDm1xc0zLX0eZrTU8pvy1oXJ1W+5NYK4w+c7BlDNKjH0tXf5lul5L6R0aQVC7DHGApkJDh4e723ppUlMQoX9hkut4yC2X6mU045t8h7TtchpGmyLr/z6zGMWXx6HeXM8hOIw5OwuWFxJaWlGYiTAuNXs0iZKhFw+7mPHpHSo9REcNTztna02eMNJ75SC9B18X/ZD2Y+i+VkYHXffpwYB9INJud/4NyWuDMeNcGBCGBCm7qsC8S8zzxc4Jemu/XQK0RjprQDCzUnQT0tax8/i4/nZLbo4fnb6BB6jAoGXArnnw/HVaxcvMqk4vLyKAmnqjBIbqV8X+CYM9uqWw622lshqjxQrYmiV6otVz1PfFSxISoq543Gw1WjgObfKqpd8wR/K6cGV4y04LAT0GE8uhaNfW3vXBql54LRImIMBiLwQJTVeplrEe+5fBBvGdfSb7+4Gqnsk8mHvswIAahM42Vh1FCEHH6d+SZH48w/ktIaSsyEEb5ddMt9Q0tIVNflnSh2JyR8pQqfb2zvX87Je0amUYM0prxvkzmmean4ZKNVAWtS6lCLwc177+e+TdM2Nbhqz6L/fpAmBasohySWphgYbkwjXvP+oDNXw+TjtwYBEvGNboq2n/GIl+tVuPLtsRA9xHy2R/xv9BU+WmEe1QqqNjihIralbqpkXHRJvv8an17BN/6tFe3guyUijwikey2Us+s3b/0NwGbDgjpvahKA64qA6+dvVQXLZGSy4SR9JVoRwh3RcZFrBJfBzhOmIDNVFmkgCRo66YXIdAKU75QI666O9R+X5pdSdvnRANDUCosYTyzLOGq4P5f/uAwVx0Mr3Oe2uARyIKXGVcEUh5bNT4pFL3fVqIuHcorQL3mf2j+3JNoczHg9jNuwxJ1IvGe+dvW6I5dHhN1hJv1l1xLD2iF1wD4MqQIrwE1X9MURJAyXPj+nnTnT8qQDD0B82k0fBhXNg1ky9MOtDJuZ+jhPe+FcTy43hUhLUVyu8Rax9xwlPKfjKGdyXbxTWPPhXKZWV5yj52taNvj4AWr9x0/Z3W5oHwimX9o0427eFIKxN/pAN7bJHFCubblnZ3TI8TLRP5hzmfaJQW0eNmCNUFsmTM/0EPValfiWaWfSsKyLk8Tk8UAM6Qp5KTV0p6Sp+Wg2uVkJ9+dcStCKGiPiejb5FZIlwPeDoiGYvP3A0K5a/PdcHoQDYuEDGc7FJj1rrFmz5Nlhuzfyt9sKCbf+rFFtjAsbLK7937uDhM+15DqMG1Wdv4bmpMAhMhOymqasl0Mz5mwadTp5P9GPu3NzEwExAWp7ObYWg1d0cTa/xJsSKHLIRP0oaBBPaqLl3ibBPzn1MBuesqJxhLhTjnyp7hfAwNSl+90BXXl4Ftpj3onrqE6LBnrUIeOfkgVyzcj9/cFDy2JvavkrycpKq/98TqLwoGgRlkNIlC/p8IF8lrdOdlsYqg/G8p+F6mmdcUMBLxgZ1XP1hRlIx2ecbuA4o/UVQn/m5u8UtXGIBMARsfHtyV0eohAV0RIVf/1hHoczJLlhFWJ06tP018lp5yVsm5g379M7f7ny/exZxVWhVpCNDqJd+5ONSdUrulOHISqEH6ucB3oZ3ykDlqGr3Yf1CFFykrCKi6GM