Make A Prediction

Lesson 11 of 17

To wrap up, let’s use the model to make a prediction.

We’re going to invent a fake taxi trip in New York City. I’m going to get into a cab at Times Square and take a trip to Washington Square Park. The trip covers 2.3 miles and takes 12 minutes. What’s the fare I should expect to pay?

We will ask our AI agent to write code that prompts us for all the properties of a single taxi trip, and then we’ll use the machine learning model to predict what the fare amount will be.

...

Please provide your access code to unlock and read the remainder of this lesson. Your code will be securely stored in your browser, so you only need to enter it once. If you do not have an access code for this lab, you can get one here.

9Ia2zhyEWuqfChcoOOlb9JYb5m5/yuswnclysLFRvGSjN3U6QAJRrIuqbTwxOn5PzhtPQCs2kffyM0ZC99j4o246iuUuLMusUnAZm8XgJQgvEuMjo20YcjI29ihW1CB0+NJETGBccZAnKy7KY45mKH2qJsaPENTX1C8FKEjiGQgwhLDol1oCaoPR5+ZSqZipyHF2fiMSisqXmZjBXLqdSfAzQIPMpzLNl4Zx/pELcAUUovi0D+GEic6BHHCnZq9vNBBLql6IvfuyvsrP7VWhaZ1CYyDs1qNe70Sb19oQqPgtQtQP2dhjzMIE0jc2ObyijVbJ61sW2MeSWnjU0uoO0tfUaSK8n1mqLvK7pUHzfRayQlV6THOwpPyRQKFeU4dkX21SX2ERVhIaXowGbpMNS6TOuRMJGIY7CnFbz0Wh3dCB/MbpEDQESykDr7IX3P5tFCoAuM7Yw5q1w+3xCeKTgjHWtZG7cJ62Q5rtb3HJSRDPHtnKfeYZdYrWaQyk8GnoryfiGDjMAZ8iOMoP0hOU7RIyeZJcNmQJ20DpVAoeT3nbybDfWuhjm1aWDTcdy9w0PFvhnJGOAbTycKPsJeQhxdNmi5zpqyrRPLEHqurY3pTuwdh7MubTFwm8kfqtyoauVWDZlwJIJUKQxs6HU2vY59t95yeIYS4spgfItD8/lRYUtwuQvfURq5uB69CUH9Mup6l09/gXrWMb64IsppLwj8SbsN+RuQYwrmaoOxBLNjiHqI1yaSary607uk/Yd5VLQpp3ExFlhHkuYboIhd4L+00/0Qwn5pPngFyO+yfzYF1+shPYa4Str/nRyzS4t/uPeHSpCEqEuqrG5133BXUHVGP2CsQKdCAFU9LN4dAmCRm+cxza0raFv/qJixZ2wYTbLHODgMfxBQrlM9M1+GwdXjV/ZOzmb3zKOSofzqVS9aLjk0Synnfiy7a6TJxA/4H12ufEKgS30OXyeJ6AHgDGYdzlmeij6id7W9+StKMJpUCoIZzqc41YRJ9OGsVOKUizS/F5N1mDmAivzQ+upk4u7ARZWEMWqvAtZoNsR+PXz0ZskWhPA5sizACfsahofmSwtTrC1TtPdrp3TobtR3Jv7a11MEpfflsoSj4/FNILFiw5vmYcZtCiFlnmxR17Yf+QBsaNe53qR3fapt8ukVw+xqW7t9Bq8vTeU3F5dLJx+0UiakhPQOYz2XnoXie0hkLAV99yQwlDZF4wQAPp1CuOIr5X9jDuVurh1la5qM5ftgNv7VVtRN4sEtzpennOrmRgCRXKXn/OK222v1NW5LQqTFrPUB4SHMWDe29E560Xg+NsB4B1tQhwSKyqPUzEfCdA25DeObVU/+WpAwnqgD/nBDLbvwqLeogk7BfWHXFmdGV4e7Z4LxklOvXiryzrdUt/FHt2iwMPWAuBAhO1CN7dRTtsAAoi4YDwv5ef2Xu6QFmmnCL/Xr2pF3gKovNYIqcAPPyU+Ak2VeDFJ9Al/YHYiL7pzovQNCXntX0c2rOgj0wS2v8RByr2ZCAnN3MXN1wKxs0kSNLYJNm1VXzCcgOe6n0i1GPAUVkocTeMjmUiQhBknfZ2457sT6P58d4Gh0P/6QqGfSQ1xPsWWVH2XSVx5alrWWafTt3PwYwvtzDXZN3yCiAseJxsEWf5fxCqLYlq7zNLBx4GENpRoDcYqpIzYteHjPohrI1Fx4OSdj/Xd0fT3SiJRqMWwWSJLaK02Xe9wyneGCELB7bCWaZvkm3bAkyZFZwocR6lU30YTmDbeGbzFH9f0lmgTpd4durSxUYBteQ+UvhCyZ3bE2fVQmxW+XJ4RZwe7SYB4wr2qoGxCpDicx0+JllzN09eF1GwVlsWykJPBSWzVKP6pXBjVnIgq3kpyYHpPW3Cw1InBPUO7qgVEG6Nw+ZJwTWWMz/f8X5ImwMMqO1a6MwecZ2PAdc5Kug3F3/PUPeuQN50pPtCe9m+zlrwKE3Bg9xcYM8Bh4fWi5AKGG2ZyaM4VFRg7OUsqqfTB7IKGmNlPyjrrw6r3GN3nfMlXuCTIW1FPGzSVDbMSYhcxzxwZX+cbr0+h94+t22PiNLmGb6jEX4mHoyJ86Qslh6zhEWLQLr57YBikJl/JPhVdFqkYVwJ+tqel0Wuuf22fkUiRnXM1DC/YH7btyv09uGTdqAXxnYKdLcTbSxCuCviMG1fqkCrOJF2gSsF26UDQVLKqoVFiVCBs0GW1p1z6Qsb9bDscg/JxYeJjpgDtvuD28lRNPAcS8Lz3+/CwvR+czzCmzgIMxgttajtbsf5+bGPOnLcW6dtsi5+/SQPd6k2ol8m6d+qsL5DQbU9JOJGCwXuxH21LPvuGteRZDUSkGm1XbS8Ueuq6P15UGfMQ7UIFJk4vnC0J+5bpnRhg5PqN/nOQZp/5Y77oMBLLpxAgSjc2DnQHhJpr/0pEoc3l5yZu/9DlB8sV1Ut2c//YQqVWubpT7+MmZ6dyjvWEhy/Sduh0tO5jm5lrfd1do+pdm+aQi/iS36J3tXh7TuXuxnkUeoUjcx6kdNkt3/t9sZQgevZseqqYycJZW1tPMVcnAcx6VsMlgKnbEOZtC6eJi23ZCD7q8jtErsWU+6P7pMfejilKiAwM/08rvlCkFyk/Y05MXeIC+L/DV+5viJW6PTOob8O3ylPrSQHSTZ8c+mTE/00CRahSVS3w5agybhmFtNEtKoWjrKqsnZDUPckHYmEWVPisA1ATNCbjwMNMO5QeFKMIL8TOVYha7ZA7QamZ9va0RiioOtF0ztZioB+0vNePoS9gtB91PPGBMDUJ2R7Sb8Fx+p1cnx7gHdC6BEwbSKPHh1FrhtANgANnNQ4TXdOmsuza1EGnHnMzTzcpHwFgkFuhGPgaoKd7GjEPJgGL8OiGSUwdVivuU5FsnX58tBsBw7AEKNEFZShnBQV3PDTlJN/xvZF80seVQYaCERLHs5a4h5h8Ae1QPiVm/EsPo4wDWkS9ImozqYrk1WuKg06eCVCHk6lx+uVzWKbbgDraknGM1U7iaWxVzJjz6C4eijJbTN/d2r4wzQ/6YYYiDRUu3JHEU0aXvOPKz2heyEC5lne1cGMdZEkbxcU33eDSZsBWSmDX3FiqByH4Y1reDGdHuOh7r/0S/vQ4seN130AP2q5HGeaaa8itYjjl5R1qvw+WkthvA3RBbE3EVvV6W3p8B2ngjn2aAFc56EmDtnYYT77cfJ5TI1LT5Z/FQs5BtWkR0yO942ms6nJKGAmExF/gxzFbL4QGdOsGX/MhgSilKiXA3yk5wFzIsutuwrPco4N9uJR0Cxviu7c2BAayTzuSQpK8SHUoOyGjCic7vBYGuWQlb5AYoJaZz8ZqkiQoYKHZ85YhkKZ/c/mY+Uoym17mg4sIBBv/vVFXn260Q2eYOCaodoeKaxSSdJ1JnAqPXnHPfnynlxeDgENnwthma0kKm6xWavcJRe2z5v8Jbsz4kNahFAlQTqChglkP+YgVNvVpzcvvZjKqZjL47hzFMj4K33zVWfl54j6oQneZPupzhpITm7WpoNT6XBIyI+x3NXhARY/Pjdqy+0mZlPiX9XCQ8j2OilKpkXLI3C9h+6VRoAELv9tYjvLafSq6VIA7CcHskpjWqEZYvgyvPHwyzpQYyq33y6Ir/LKtD8FiofbYMs4eBac3VVYFjtRzMoC4ZHvWQlWTB+mZhuIHcn6Amq5HIj+YtGnYZSlaQgJ93ZW6+6zC1a6vJrsuTX57dmCgzx6S4fl5Wea1GyayoFwqcVgJSnTSTUi+6ESFzW6VNUrym7/eg+6pIQzv9aZ83dygAuET5D2wmR+lXsrV4QFKh46BZVgW47l5Aer6WeqlwEaG7ZmPXheTHyldq6KjKwXA8DeEUi1wyzHvMk8OhneGn/IlxrDDi+pdcxlVQuA5wgPT1eEPugwDu+t7xb5mG00CziX3r9c+OZFI01z8ZVzIAALdCLwKMsI6Tt7CpazqMZVd1u36ps2+WHev1O9Kz4XkPLyE4GqXu8ATa+Ihv9kF4Sa4p2/wLlHJBHBzMqrynCTCyGZHVn6RR5SGsWitkunYwFU00iuzdUWORepuzyTpvtd+ph6GQWqzKEAq5zif48CwdnvxtRzJRpQRxOleVFqppg0Cemzp4GvQXw/tvptiuYB88AjbljrmZhxPjaGogccOJhFQsqKAvHflRUh6MgRzbZgyK+kjxvGJlHox0Q8JRBI2m4Kw9rFEZHc3U0+pVnSiX6Xt0X6+4dJTpseuPAxwoJSftX+eaVlMiq6Stut3HnHT/b5lQ3UabiEZUz7H4ot7rJt0+dlgpDH4LdRXAYLdYcEhhkCBl3Yf99I17WnYuKEXcONhijR203Vg9r2rPRhfSXtCbc8KlU5O0p53g+iHglfse+ulk5JHMohHS5vjg/D+wsf+jIY3UIvE2MY0P7FL3QQDQwmhJCMjPW2/+qfQqWw2In3h1C7aQtwOE5crYhHc8oFllAll/0DkRtDWc5k1S5Fg0JkZ/miiNyNqDzlAf/q3KFdDvGbz8v90ej4NzEpludr2SIZKHWyECJLyWO5RtpDuGPV1vXGuXHh9kH+XEy/zdDEVUUGTJCP32ohy/QijR52o9oELqhRiQgxBrTIsM5ZUKAcd6jseG9jont7MMM7h49vQgUUnDhtRuxoJSzA7T/PWkqEvk+eKIkd4VRYuRZKuPRwyw8pDw7J425+5m1F8VotFT1bmilsf0ZRiXMFmxdE6qphH8pO4sZpjtm+V6JPXmwHolEiTD/r2clayHMqLtW/SOgUiN0Q9RVxJFm7WrCKXrCn3zi8AungcDh1YpSrSV803rCKKqFh23RVI9Lu7aKgn6hfa3LFQT+o6Bd6S0riyfIQ0BnAMUEsL1dHsXWOecvBgJgzMv2vVmh4gmaWhvwtFdtU45vleCOL+FZ5N9qWZ48/uVAz0WOxzWEfqS8Zit/wm2vm1bd74vl9mDdqD1JmCYl9wnOyHpkYPyUxeY06cvf/R1JL9VYSH9TCP4Pl82Y6to0zrAy7N6zwrvHX4SqMk7tuDM5qmiZFhYuN9byq9a4yhLl6EzBmxiIy6cSNrhR5CArJ2Akd62pExA6E+5osWueRfyT/QKlP1IrsIITs6b8UkBCTx1CyQJkoYky8uwgGA8yZrlkemVhhO7rtssu7FBOvfNCkxRiYvJtTINNHURJFZ/FKvik1sKMObEUGhiSZXaiUqAqAe/oJNvyIp1WnITc0KZQIPj5I3qkhNCPqV9fZfdKsPR2Wfoh5vViXP246ayQPv/aaD8NzENXEN83KjtwOpEltSRfBC4jbd74czm1fJSNT0t/Oxt57Ywa3dYH2y9XTxaDogM9yMJ62+6KR9jJnQGzsADxC0hWrd0CnzVszWohGtTlUsczpUCjv4r34LrihatwwKaKjc1ye0iKeD6XtqaDNuIzY36FDCFf0Q4qX6lGsp0mBDrf/o0rdmEL72bmPficrGVqP91ZNAJMuwME9lF+xKljlwZr5zhxQpbxeKTLouFrr9wcSq/+oYSPXyMjeTRj/mJfLddHVCeDay2Z3Jf90UMboETt6Hie6VoBvofDf7oupI1SbhTSKHnzGFzJ3nv3+WY8jSzp6My6e6BH/NnXLLh8eVqS4yh37WIsULVpO3l5BFUU7Aiznn69RSHBpcoAjBZEzK/xZWy1Ghbl9B9/9zmCQsxmD5jivQJG7XX9zphAG5PC5FkEIMwYSeIcb3rOutVQistjZ6qbQrh6Vav250E7Ul25Ma8RWBPZmAwXh3RlTa1+QEJBJK98xtd7K4er8BFUyve8RkZ9nlxRgF3m7rTUeYqUnekHt5qqDjwYnPAr+dj7+db/VvAi74TQ+aDAaQqNsyQ1wWXVFpH5XGl9RMCQQTHoXVecxMEz0z+GhQ8u7X/lJAspZawo4E7jWeS5jLlRefoxRXUgaoiFx9yaKuHcRU7hSrmf7mqOvOLuvVqaS4oe5qWQMsx0dNwjcXMNcMwlu5YSqNJezqO6mo2RlAkq5yiSp/dJHMbF1jcmJnzl2ScUSZNbTf2wUW/ABN3REWgOs2S8ZRckigzV/Hu0mUBrpH1ewDU4trwvugp5LtKK8EMsm/1WWc71j95Bg8g/raOJ/GOUV3hoVEEArtZES7LejkEnjimUD/2t6fpDw8aCNgtMsJXB/0AME7vw307mCPOB8BRDP4XCwdsR04YiN7UqYMekNnsT+h69SM9zjZDwt+Tbd+o6x46MBhfsF+9oo3GraHK6ZcTThYiMgyyo/P0HbGLWk5yRYl0QIT1/pJVOg2xFtcXwh0b1wFLuEKSbeD0P2BzzkJQlltl9jwnjZYLbi03LeRaxEZx0aGOwe+wzk0v+vFS+4XkCRoeksCH/izaPuWdUJxYv12RV501AHgf6p2nL1BKzT9Q/ltCi1sf3dnb2dG4qyNJA+2994ZHLKd7/7JCO8zGelpm70aFFHxDWtiWEYv4N286yw6/e8+IgMShVwbKBLEvCyg8fY04XH9ZtcemB9sc3WbWjFvX5cmk3mMdoB492y/oWOF9/DOgNejBH7DMsk91Bz4y7UPhzXgyU9MDK+43ZutpC72y490L4GTkAaBW7J5kwqIlykWkorCg7tyrAQZzOcUgseRk1dN2ojWg==
Previous Lesson Next Lesson