Plot The Scatterplot Matrix

Lesson 7 of 17

In data science, there is a visualisation type called the scatterplot matrix which shows a the relationship of every dataset column to every other column. The visualisation can be used to quickly determine of there is a linear or semi-linear relationship between a feature and the label.

In the previous lesson, we discovered that FareAmount is the best candidate for the label and that TripDuration, TripDistance and RateCodeID are strongly correlated with the label.

In this lesson, we’re going to generate a scatterplot matrix that shows the relationhip between each of these four dataset columns.

...

Please provide your access code to unlock and read the remainder of this lesson. Your code will be securely stored in your browser, so you only need to enter it once. If you do not have an access code for this lab, you can get one here.

9Ia2zhyEWuqfChcoOOlb9JYb5m5/yuswnclysLFRvGSjN3U6QAJRrIuqbTwxOn5PzhtPQCs2kffyM0ZC99j4o6NdjkDrDOBhyuJkn1q9ATE9AmtPXwu619pjmlbEv8Dolpcbhc8/xpMPnzowwWAMiuwnL32fcHmys1Bx9x3irqhgufMNpI0wyVseqMcbl3rA1eXWknRRWwpkgUkkX24bhuEIrz50xFrK6i0y7xgdgqVwhKhx9eH6BRkZQ63O/+lSyHL2+pj/BWtU2F9R3ml5NlnISgjXAH7cFn2yz5CR/zNmCrJkTHY45iodl9KiWQ1WZblaEY/UyQMMkVUKZCUeOF2rZR08GftUV/u3mZNsSi6JVbVWk61DYURJoQhAajO3JOIogbOTl3hOek2e6nGn7TjKbwwABDbIelQIzmSkEpnHiowe1KLMSiYzih7Lk8ttmosvoOzKft7vSg91v+JojDxKUDI+lqXDG3ySMv7WMPxOKinhScL3xR5Sg7f1CoCEvjEO3Uu/M32ddzmjtXiTx++gC1eMDWAgi+75+szy/XORqqDGcFcBOTAaCx9QHsT4aluXd44kPL9gqelvTwGISmqbO8aobNLh4j1UEj6+/YfNcXpb/9UfnwJGTZ4LP+wipiVp6pZDyWvzISclzelB4cLAgXEQH+fCpZsDutbxJGFKPuQjhjot1xPvC/XGtOKmcaMvHqftZtY3mvX4ezaA6c1LOM7rj+vSe+XAKb1j8R0ou6AoDIeR9buwbTdzhlx6Qv9/P32G4MNeRQLrd0moaWtU52cdOwuYAx3Nx/ytJfQzkV/fU3zTV/RIBtmahRv8Eg5MPmHfpwZRATXmdKR2VhyOTJJRVbhRMN3Tr96otMnP7kA5cVS5uTY31+sbl0OYd1al4zkI9SqwNvOAf5ilg4APtGPv2EVfJMxzD/DE2BZlYwEjPbBzWv2Z5oqFNQC4yjUxsoIHjRzPLKVo59d6L0Lu9m0oo3ubDeehxLhJ63M2/1EkqkVfQe42fCOekzB8Y10zpw6yYebygtnxTms1dTj4eco/paPoZgTD6rzXsUcy50TAeduRp8apaWa/byOAh792s37nzetsdu2cVHm64qE8+CmDCvRCf4pebwgEXakmXFaN6woSi2wCBKO40LBa1xEejFm3HmIp2sVEPNzlyRCNEC8LyQLAXIFS36S4F8EQJtNl+4LfyCQM7DPnecQoGtEmx/nHDfCZ8WV/MxrHZjyfwNld34G/YCpiifl5ulGQ7YAuHOOtnieUGoSlAIc2ZWdFvFxK5BNL7UqIsPRaq1SFMJCh70Lmmu4gwt6pHfcbtLuhZhQSZoSY3YejN75d7ArzmiIe0sBpVSqhpYHv7kShDpgoH8cIHeW7zLSCHt6q8xlsB7akwqKrjOBaEsRM/LLwDCX+Lbq238QMxZCrbNVZ3jHNAFoaKcLqYrHVOvdLBs/Yat8EhYQSTfKv6kEv7RpLnN9OgeX8yM7ZsL7t+lV2UQI3mDk5/WW3GyxUQGkftcsFOrFvA/YDs/cmvEJsiVye3cBT8MvRsfXMrKRGnRyuZPHoeE7InEmvyLfKg0lAsWm7ayy4AdUzhAk7HBFfr7uZGg0xbVVfPLBgQFIOTQUt5su2JiPlHBhvydPU+7YfmpGm6yTsmBMOGVMw1J49I5BOJEyJ3uT144xaCe5QqfuwhSetREdGx9ZpxIam3FB5VH+1V78hwxeLutfjj2EaWSrN5MkUNpVwzmVPpAcN5WcrUfPdyO15SErUvL+jRXgqk8vFyqcJHvfnw7MJFDiVtsj0PiLupzqsKVVdCVJU+Y+N0np1BJYCgma2vzTfLNTiN56TbbD2L5AV/IqzHT9I65mCOUzXtmMq+zEwEXQAhrbEVatZ7NYCkUggJ/ScbvAN6ZkFw3zYysMB9vYq0W/ZLbJuLeSlrjWeQOKqh593y1bfxnNARBOLKqgtFXkYO/HuQT/1IzEXXA1A2b9AuvmuDhKWHOO/5PfF+Xh8Y8DHRc0mbsXknf/Gh5DXxhdI3BbYnp6dPI1lc21gleYupng5lFg6730LvHPNXjG600qszCT5HH3xqD96nXbVM0+8JAQcHRiIgMbQpMvCY7vhm5bY9AhCzCfp0DxgWrzuzSVamjqId5jw8skm2i7/3VOeybZk0BIW3+NXKpc9NLPaSooeVODgPwLlad2vqhglwlhO4z2oL+JujS0twr3jzRSiOnJejjF1mkMU/hIUB23BmP8dfrl07j7IX0rYH+cJk/SAo9sJLT7zCeKB4LCi8D0K6morUUZKNK/GLSy8f5taU63uM73KLNaxWmEc+p5OeiDbRvz5AkigmOjmcdoqxtOGPmTQ6W93qZRtk9wDQeAlomA0kQ5hYX6eIgWi6//u1p6GDET8VlS1dzw/fRqUa/ZIxaE2cc1viU3sZM689HDkPA9XEkyP2cVftiGkKT5KNAHAfUgvIBL6UJNerS9/y3R/LljkA9W+D/fyq430nxESFAHwmd0HrVe51OTax/ZD79sq+xr/3SV+Fw0wbr2v0RWFM5tLDI5jizOkoayvlBrUthJOzGxlRGxA+ywBzbxDbm8GF/jbsM/7NdZYJT5IQTE+/4jqPlRNmOw2KalkpR2lf6V0aLN7ZbM1ZCb3GkVzbNkBIaY6M+QXbEzJMS6S4BwFMbxTMiXr9jBupo+ez1eT+SxOsXJUB49bMvH9Xv8k67Cs93FbK3EJO90sNnSq6e+J4q/Eign3NYFNND5M5RZ3ZmmLC4v0tleh2HnZU1HufC5dU0nGVH5C2c6dITdl/OjF+YVSmbpbme/m0c/b5GNTBJ3WzJvqaErn6RpG21KKTTZpz1xBx3rqMri0XfocRa4sPVF4opWh7EOp4wArZyh5r8qcUiYDEGnC+NLLxEZ4LKDKTi/Nje75kLLUqm4Vk5JJMpHVId/ztZTZqV9V+zJACRjHoOwWfBPJFXrQ8zYu0hCYk1Y4SzWXdBIbcM1IkSC1XaDUUM4FdmAZOamVeWo/J7StU6cSUjqPInBpunUdy9U4RdS/4EsN21X/bvVSjpLvjmWtzbYRWnmWHVhvbhPipWzq4E5CkW0vpiP53aZRmFpuwdizcQn0AKI8qeiNBT/DNdEbkzhPa7/Pnktqrba6SDWGujdc4WDFsAOwvTU9ak3VSpfxQ2+U/+YzGpnEuTVfnm1fqkmch2hmgOT9zcuVN7Ea/Sj4Xlf2BjGvQbAW7LfIP3BS8fE4VgqYLd6k4drpCKc4A0h+md4Ghxz+YFVMT5Xz5opiqre8PskfLNbvKdZvr0Llu/e91zeEFSgQD9nHBMmdrDePYxiDg0pc1IcvpuDR0biTxsqblEltImUAIRxVjqQnDYFDzwzf10oOv4tL6z7UG8GSbjhJXBainVvhrBWapcQd5tbCr3oLXdTFTwkzqP3AdYEjPlnhPGY9u8kmANaRT8PW5lpo66TIVDuSFnZNoPT5t39oRHnAQevmVOlyon+UKD8d2c2djxYLGPEGGmPPpiOmKaKBo1/IDAP4cQcXfq/UTbpkHrGTVPcagZQAxLVYWbrxyzI74LYZbdkb5+HQnM1OEXBweaPtsY8v4t5jsCR8W6n+Kz1dTeNeFlL4vGABI6MSYG+fsTC007uhRyg18t43lsGo2l29VdvgR3Llpfo6xZgD21f9Drhnc5ir/oVnLrr17nA/cdlSvZmbCtDN7zzuavGwL8LZ3ZaYlyxn/XuWq2Iuk4BLtf/A2Dy9uH61QFrksnvYwcNM2PMu1hy9bX17h0ctAZM5lke9ykmnQrkvEss4YDnfQJLnSg4VN3dxHJmhqPUYqIfoBlBuokw12krw2hQ+8GTlQIb/JtSfp2fwFFvzSDf/KL5YfndgGgh5v0NR71EplZj/IfgcLBGu4zrab7bmjsASAsFKBaixqO9CCRlxwNIoK/r9YUo1bKwRijppEq2TpieB2vSld60f9bXlFfKfHLxRKDa+DXjKB4jM9pmpObQYwXzJkh2j0TGJgOwWpsaUSf+nKgHzwc4x/I1iafXmtWkLNRcuVOnWhfhLd8q2EM6xHJEvQyZyr/Xi4+uZsZ7GgcOOG1NjYOEZUxRaXaPI+/0Aw2j1kjtXJeIt1ZHR9HtaZV2gX2hPaqdT5QOK35q19CRh2j0DisEkCEvwA5D29hDpAfyDzjxOUYG1I01B7ho1Ix1j61x372bE4Fb4rQdrtYy2Tl2gn0YhQNFL1AUoCOOyQXFHMQK+WDQg61mPwbPzoljRkBTffHvcwYQBrNES9XqxKWqPTaT+uQceYg51JHzyicaeh+hKGoljSk6aiP/zcy2mCY1hjUDgqSokUos8Xz8WRxECDfzEEApzcI1GoF2DkNU4VKQY4eeGFfOPiefQqGmyIbRIAypmskMKUhKZH+Icv4Sja6jTyCpLGhOQYKiqtBg/lBtDCBXyMaXNXn+KdMZxOOeihAUdhmFK4NVX5p2Uswjh3jK3hpx/lojR1Ior4zxeyBylA0XqiHrvZ6QhBChMQ88genQSTkuyJULB2apV4Va7d8Gl8KVobcW4yvX6GWRD+Ud45ij1O8Ah3gq3laLsWFWQcnKH+X6PpCCaJY7Q9GlUENr+9Ap4lgK1eDLZjMi3hBoN9anImff07QkZazB5nVr/y8J/TcSzCCFfvA0YFJ9MPKmqZPgRavXRj4KY6Y05DhPvT4oxwMApQf4lKBGCsnc1zF4I4h9bbZ7uUx48lhXKwTJhjQOvJkEWg+Ky+xYzSpSaurkIfO+XS5CxbaKIZNod3NbpUUZWoHp+PtNcwNrufoUDCJWyALI63DlNwBJtNfCTXmmUOst4FvPNv85hn7yTy+QSw+cTbnYsWvfzECYLYAiTLef4oAq1CewtkSbOXnjjw9Xo86JMc88cRx7KCbNibUKVhu2e1v77G5GQQh9xxL6JXYbpkKdXT73ZWDGCHi5MviQSp8A1vdVFmZvhS9LlcR3Rgsn99OogPY/R1/q83bbH6+ee+fWp/xitsJ+FHcoMZFCy+zfDgDvB8ZSczE3//LODRcIzCkmziAOpF7iZrdN8Tm4fmn3yaiGwnLeYKtyMmOuNyMLjOA7bR5QpyrGcS3PmhnCGR0t6v9DhhilWYFGDRUMytBRW1gx1eyMj741IVx7Q8U7bscfpa5b9YqImuDjVBgPM8FiLb8lk1PYrMotA3Jw1gJYwgKZAwvlx9y9fZyf8EP4TngrAxQ/zq17m51yR0jbWtJmrzlg94At90X7c+5bXFMlPOG7g3jMDqgJtn51aF9aF9kHdi/fqfGmuy2/biSd1pE0GP//Q/oPTFKuKDshTUFiBgEJQSexyx2D1YMIKgOMlFW32qpRvyPHMF4vG74d+P0+zihQnGw61KmQHQvMaFbkuWouH9PuVDAKjykSkoboUIvLm3hUjrxoHOdf6MJ4SRpl5OHmXL4+ltpQLccVLnrUmNdrZWmwT3/Dd3/YhAw3a2wBNXaqFUIkR1erhHclVpprw3AfiBy8PHslh+y2xDOTmBaBkF9jhkJvY6STYgwEez4UbUpw5h74FtHEPNUEEiahCau3SiR6BgxOOi2HKEy73H/RZ0NlZo4fZi0DJyNHXTEED61kKKpE0TfEJxU92VEv4G8ORvzoO6xpcX77/avsYlM1Qel3rmilQsDr2zb9SU1zI8hG1WXvhvEyjhxAZA+AewRAUYXoXatwFIa2OocWHg79sS7DXZE2aB4vDrW9gIegafOqHlXjCLDTVibFSdwYjBh+HzFgXhiWEef/6hIEaIpku3qTsaRjYQrMRbQt0fP3ibSFlYBCxahtNmfj0lSx9uDTE6Zd8wvE4SMpIf6NIjzuir58oRdKk7uAHE/9md8o3tIRWj6NU3gSo27ZaaNf5WWomuM23v7SA0cm0ZB+Jv2H1Trz2Co59utmlAxKtRVanjBBaLpMjcZC12q1qdTV+AfVPHhmjOgxThrIPB47ln+RwlR4XQSpYjU3G19rKaQKnX2edgibyOnRW7/rbV518oOb0KdnAr2fUW+I9z26b6KG8TXAgHZr2bS8ahGRmV71Tm823SDVVMyUc2osyXSNtS15beD4fjX4YDD39//hf9dXp/i870UmlvlFJ487Xt5Xj+unK/ws6rL/ISs4hLLDyD+KyViYq/RqrE5bM6XT0m9FA+X40aPd98DjOEGggck123uWSxayCrn8fCkMDbquoWyIF71/3CFqFqDJU+UCuOKZJ7jAeJJzRRKycy7oE8BLSZUhej835EhypsyOMXlFpAEjMYzDktKkC99kPi5XoiXJziCGyLcEDq60Jxazrrc28RmQf9hj1z/QiKvQqxCvDLzvQNXy2mnwp2JFCXfhY6GK42kHPtQdVbDuAbuJqeAb6Gw3NVuu40/A9qsmq30iA/Ixv5vdnigMdsejGdMNcfsqO3dKQHGZRmRcEfdPgXUmrvfmLRKXKt/5vwXGWe05jk9EWXPk02bzaD72nEjdcVxC4wHA7hGDbYgj5WEGDptvQAx0aHZLyFTdz3OqBVZW9cWYzy6MPBlLdt6DyzpriW6b1TQG7Kcom/UZ6XY98Ax7VirsWdc70zmlVCXHoFK2yrbSAjo2/9K5NQwCjpaW+GnhaMXXf9MxH2OhUKmLIO0eGwBp4kCOsjcFgJ7Qut1e9dK+BlAFClg+ogfCxFCIm8FpqF3vyx9YsPTxcGISXSbv0eFx3WDNPYdXceoliKbAKV2J1COsyLf5byY/mjQO7r3rRS1Qg2So+VY3Y7Qx30DsfetaEP1s2xbiUF2CVeql00udpl+WWi/A0ctQjEnkQnrVql4yExeQcOD0ZGO227QF4hgqV5NGXnabVSavvXjrIsHxET9xrivRzWUiAmbqMr6gieGfCA7l2izmODqtgKVOg2MGAxLlMRkF7P4qmvPVxOMK9Oo1kc7QHmA5/u38C+HfdRvWatPeMoCeXZBzApAqcYyp4PyIKOoL9mwjwop7Yb+ZM1+Aod4S3Vho3fqHtY/WOpFWwmi/3edatn5xwkdbvnJ3AUPRa6WGIqjAjs1iIe9p1mgL1KEbw4Jzxt//ptjChyrXaLK0ZuD2C7pJXPs2jQ+ZeN8ZhyqYNELuPan1KdmxE1LrCIvuyfB9kdHfh6GWXMn/bKszcl4ndOxVhRUR+eu+TQs1dt1WRYQ5UxfBTbrL91/5i6jtv/cBSiFT1sIOwZ4P0hzJwvx1vgJGNnfem6zwy992S8OkoEDoJEI+UM/ahlQoL+ngdRx3anilY/oeqZjxe5YILxk9QrbGuuoZ1yec3FoTZOcX7axg99fFDpEYUC3BVNlLNTuuKTdZcvAjoehmiSNVJ5LjmBN1l97/zzVCUKeGxzAhl45SP+pRrCft4mRYNX57kyjdW0xnnz4vl0x58wPaT6BtvUgaeDObrlyKRhICNtAxLxnvoAgj3lSGFHcfA9kCDhDofldZjXnSwiTy/SO2kPJw6h44EE50+d4c4cPzoX/KRtqw675vla9Z5YwI2JOkYfp0xoC6VnCxlWpKZb5sJIokLi5NQYhxp2hKvuCtVw1+5rOYxK4QVkWy4p/uReMO4fvLEHYY6IjlfCl8F6J6iA6xJuJlAZZFOTAnQB/5M7zQlydqIUQjTwk14qvDGuDutiRI6tkBYx9cmVdGDG5BGN0BYMw/9rQ5fOKRqibrc7aQIIRo+qcJM7+67v9CSXl4MRUCf/oECp9Mo9TJuS2jGEa1D3E24KyFnLq/b880NrbewqN9moB88GDWWwJ90A4leI++gJvp0J6giygnCImMtGms8mWgVR0jyCp/f3QM7bq4YQjUDQcuNDtX/vni1LOHmxTYpopLRQ6Ys+rQoqE6zDZZdnumD9bbzamME4cHvDGk21wb9mT1SsuftELVoWx3R7WbbkxrIRKW5c8PeJs39yEQ9HHh5UuxciVUWImp+/M6jJetWkcUQOnlqtz6zfDkvMefsWUodtEj3iYPONAwYJEkBTLInOzkt5GWz3ob5YkxNB+khZLgHuGKKV81LSeH01ylvhm/GoOv0VE3eKNYyIuz4GzgOZKvu7D7Izn8wH+FsbMbJFqJXwAFWfceWjtRaiOsKRph7YjZdvpRfx+zP0oiZ5fNbDo34G0zbJumXSAtZ8Uxd4wJMk2Oi6ZWvmeZRBJIRiPyzLflseEsxRQBtcNdjjTIvxaivYF8g06bCwqRK96IeRAWgWAUXK6qDeSmiH6pI7ArJgRiKOsUQC2d//mDqs7YSZpC7sfIR1pe/w1+6kUQ+aXY4GaSomjwK8MIKssOYbZRvHO/vUSjtRo930E0NxNLErWh56el+X5MsUbTgFolmBqwc9QhjIZyAuN2kwg3E08dUME5tscGfrJjQyGfur3xcEnqBZJNPh0aiMI7rpgNd3Pq8sOZDptLEyG9sLBLlv/562/PMk6AjMbcMeyOIM3JteU6AXPJibXXD4akUWpMTH1O3J4appld00ukiOlLw3cRJr5erpUoBEPcSNcrOUlZfDQVGoRZr9KHzsgEIJzAeZtMCD9aTKW1c74BlJH98kIXMGcllrlMkLJtDvwvA3vPBR2/Adgm6w2RSmMF2Na5lSTmQrE02ssxrL5IPoFzIyeWp2MLIr/f+msncC7b7aCWBvbM1B45VRgePz362MdTKga8pkRY39UfRp+2kZ9q2p9dz00brfsTRR/ly/IIoNFgTKjVW8YfMn3vxqho6F9ShMZjQyZU+VHvYcDY3iVatMs/HUGBJv1mpU+Y9SaBrXWrYn3g1aArZA59ViyyoQCKrFzYJ5iR3Mlv163JUOYsbEKGhbe4X0uyqfX3LucwNImkchrBT8MH6VmyE8R221KIAmshwdCIBE1eS4fnGcM5sWzTuTLEPgV7B+bcfVN2D2hjo0gTy35IwpHouIXJYcFfFyCLafg/2+0ALmSrA5y45nNI2ZYoUKE47Mo0PkkAO6fuHEI7CtiHcfEeS9KVPW5e6jSXAxfYhERzREr12dU3ZrWYVx8NVKjrK0+JdUXQQTuMVs1v87uBnNbY6fstyT5oVegmEMCfUBWBlcV3sxWd1Br+4O3t9tlq+ER779xUcUu+qek5mZjNtRLwSrSwsKnyMIXXdRnwI72kOOZGJ7sH8/mmHJJ8v4cDbUejXJZzNZx+UQqQirw44iuOqS9/Kj/86JnHdN+ixV5bnv1R6qBkJALn+Pwsdq9UgD3Jmjb9MLZmJ4E2A4kNV5c+UyUIVG02+6TtMNPJCTmR8ttMQNCBENbqgyYVADpi7aA9lTKZqsf2TaOABwWueoex6ad+jZJeqTpaO79ySLektBLzg20XsSP5o3uB1B2yGTCE/36zLYfyY/q3zW8AA9/KRnikgkGg5l1Kabpz3A9Lq0jjru0ZbgV5x6emc3W7wXIoQ2fs+xzOp4g7XGeHmENEWRKx++WWsftYuokkV1uHGUs9YIxsBDugwi1NtDjwi5j6/kay8+0XfV/c41556Td9Yua+Xb711Xvb/s2bJ3x/ye4WIp6EmzaOzKiM1CqhYNPrt8/v1wf+m9FlkNvXJWYmS+QK+EmWk59t1VdCzk5YQ6hpExOLMXiS2Dk46kIWEfm3hbMCVwzQ55IKO8sQhYajYAPeHJtDDR1Ujf+IB1oCc+W+E4sIKIMxiNThZGFMKBT4fxsfFntzWFe8UlZVXohyzYwpagGIbtPGOK6T+9UGGtb0up3LJr4WmLhheDqKwfsI0QXf4mwV6UyoGAIEaQKiikT9MJu1CYrklONDkPmuHtl2YK2ZhOeA6DQRDf00RwQpstoS2H0uOlwABN9un0B7Ao/FWqHxq/aLmsuhO8rMC+zLXY5zMaw98hNaWfryxTF8AlVWHEvXsisPOAkxGdPtnO/H0YGgD3Urp9YHQEiCXiiWX8uuQrTqmbjpVJW18+Qfms4cDrlH/Twi9yMaDU3ETTUZxnsDl2tDoVnzaPSHzrkTCPBuRUl17OhVCTgNgfr/72EdGTjABEvk1NK1bSjzM93n2ybI5b8QPfmNiCje8aAkKASU7RpFzK//Qw2tTl1Y6rc0S9sBusN0DifElnJLbRnrEeYTQKhBVnZ3U/e4LcwJ361HpNWIsG6bOSNUfg5JpHnX4I3l0Hj4uYMuBS+s7uxZ9FD3PEJVuhaBrhQxVUI6Bpwzs49e5H7cws7Lpn796lN12SvNeuutLoUZsdb1wOgYm+vsb7U3uu3dZ2cw3jnpVbBGKsTU+lWwiVYrYkQ6yAv9uVasV/33LE6VXil6UwXb4nYBzaO5XhzO+BDomh94WiZAD2bRVWktcAzRtnfP1CmSMjvHe5hXM1BYNX0Bao7qTudh4fz/LH2MSBM6MNQ1zX0uH28AxFAxLJkWGN0R7VkhHigV7wZf7YqiqboT/9+7Okz4obVQkWuFGc4zoMbQHIfxe+ABUn34voIcqUeATHqmH4U9KzZIHDPGiMpoVKwwBPSv23SNOJNbhvZP7VMmoL0jXMud52HoK+DGDLMlef9aoF9JdZ2Yy0gpNqp+UZCDB2oU4c6sEpLYZecEYCsO0TFv/YtFnJiRDzto892DRXCEW5IdQQYdUacfwrFPhBZM95OXzXXBRnkxxLPHfnT7Jk8qOvAG88sATEADPmkqT5tdCVVGDRotRhioCDYhGXqF+A8O4QeZfy8spoDo5KmB1HOLkmINFqpGvhe/GCIE7ltfkcROj/5MfkB6CK0h/oyrW0evOhUw5A5xZm5LoeFpObeKmjJz9FPVUCUX8vfs9A20Ce0XTMFfx/ocPNAT6dLE5Fq0Pe6ECKFhL3MoeofUhg1UVkwXYThcN6XiaKqoNyDMDTDgK2lzWuAyi8+/aoiOvjWa4xc1eFydkyCM1zGg3zvIqm96Vv3C2trKvbn4DcaKxKBnO0XjInOcfQoM9mN1WZbjxkMuMwnafZD83zJsFTKaLEGJZ7kepAwlCJF9VmbTRwn7mAkEZllAUiwrDgg5TswW1WreYPTLq2+v/MD0wBYi6noiSoc+6FUBauX4RTb7XUM3AuCWzsCJvmDbhDkpqYSZ3J+saOwVd26orVPxmFszKMpPrbETu8FAPGNFfj2q4igAemRZGAR+/NHhFC6iElqzj8lwA8u3oHgNZLNbZ73u8w0tQdarhbiFk4z60Oy/dAbK7dFe7P0coOWKk1yS6v1XQ+bwARx7ut7xPSv68HDujg2ujSvK5l06ctzpMB2shTSAvjR+jMJ3DPOOPEdQP56K/2KQtzkKfuI2Zn6RVL3Z6F8fBvUZ3YaAUB8lD4YLOGJ4gBbnzCGdtg3DOUXozqhlPKzPn7eDkABHo+w+QqwyvxTxjQy1U/Thq/AxbcVz9I5XxEah8hXQF2IuyW8AIC8h3fgVhxWwG3xjxcROZIixbxu0rKMrN6SBggyv1ZbvzaIlZNvtmVgw32ntPZA0T1n9QFqXC3dG9/R8GoKPbzuV3wHd+6nVlxFwk6Uawxv8+iY87f8tDOxLgZFIJHomVPpz8RKVqFNzjiOQ4k7CHCAcuBFKwij3MDqbNVNOfxXR5t52lIH7iZku+xUG6pPrCX/PTlZJEmASOEfD57PG/hszoKmwxPhoPocajTIYcy+4ytIBnxVwhXEkEGz1c62lI0Yt48cBNBRP0pYn4dfqB8kRbCLYIE3hJCvEdiOeBlam/s3iIcij7x50mL6ROrk/CegIDpB81imC/sl80YmyOPzKZhmm/invmjXMb1DhhmbkkTupv/bQgUlVVaTeTuNTHniYNM9+w7zsNTTY5xCsfN9MH/fGhMjirLqZXSNKmXPCJHo7sUy8RY2VK3FRqgzs8qWlLyZfy7B5srMltWOaHT0u/7gvIcdTiAJjDWcLDzD/GtVJCLCBUQK8FNE59fjRx+AmGEC92sOf0pCDCcAOBjxGPOtVIk7OAQpHKg0a8gBWnBFqL6p0cGWyfe34AshOlr097yOd7gok/TvvMf3Bu3UPGBBnSbB9vyADoIeGOfv2h3If6m0eZhnJtvC6pRUXE8m8KGYeeDx4MMWi9RIaA9Hym0oGz81eKAZnwWd8YaowDmyVc7oN7lJD6y6nFqKkW0ERyJ+saANT88eXgD8rt1kDU8i3nXq1XY9Ho4apSE+/XyL9zSLZ8WkIpi5xUuGLA2umSVPazPjmsCCEe/U0KsOiOxybYEwwPKB2z+d8xUwRGO51R5ee4U2C/Qysbjo7MlDrCOmcj8oO8RhLzNgBGKQieLMeQ5maD2rLVjQeBin/VKVXlUNaZzWuiQ1WSZaC3xFdPR68d6M4D5nhum8Df0OmEnhp3bpJNc0yu/U4Unpgc/tPzt14BYVA2KNNnOIgbQ7hoGOBsgYRc4B9gbxnvPxobcET9KLpQVhIBifDGfLXQQk2e3xZ54Q8GsTWpzpdXSWTaKxLzTBV1RfActe53oA1tWv/VpdqRhJKS+nh7EAy6GzxfuBlzoxiHTmEQxJ1byTtA5v9VP04WoPL/Hpmw549U1+enmPw6UqVTOl+lZITq0IngC2qqbcoxzAc/8YCok0zatCfYrWPzINKBcYB2EBimHV90guszCv/T3plL72DXNQBcXOiNIwm9qHNK8bBwu76ZULo0Ccbk5QolQ6Wv+jRTWuLrgjszwy/kTAugvxiBse+j8HfcJVtGGPXOrnha31y+Miy3oCuQWHGDTguahmc+/+SNeNBPWpVzMtoTN2QK6HfYOgTT2W1UfHeqnT5GbyUEMjJn05LrqiMUXf8DMSHv3Ylw9KMtYN0lUJsaVLGXTGhmELDPHXexdTK4FzvSzWoLeIjH4JmDLixVWnhcO6JsUeAH2354yLoLsOVC/ig86kiY/i0rtZ+mh5VI/AhnwWyCss2l1thulTEBqrpKYOGwv/q/FAhGcfzl2Fi0j3VshXgGXWxV5pyfCJLFm66AWhZzA7oWJ0MID95/V2PbBLUx5WXMBj67m+VDOKW+82mAXMxDRO3KMzecttymbU+LeoLXaf/v3Ga0uAf1EN9keCKu3/aYogM/EOyBlo1nm5pBMuq7zAx5XGnGHaj/wYAHtYiUj7nnBtaTeSXBZ2E25aW+rcKWptBjWZYsJBLXCfGkjuc4N79gA8mp/TgEmSqc/B+hVSJHH4ngAw2H+jAM/yGgGRyktiIM2tTkq8W4LYrguXqNy0OJy5Gu1vSD5i6KtHdiBiXvcs+XORdtIjITOrkF+u+03VVcRe+TRJWYCSud5ED+ASZ1UlXTQDCNztYl6/aQ1AojBPV9CI6g98jALO3K4CDOle4Rk40fw7PsVglzQGYBDI6VmUWiDBa5uVfo+UfgoI1RmydL7sLg9IVhy1aMNRG2PEtHyvO4wAI62fGTrMhnsCI7Wp3gWnGGEGp1R3HPjGUqVjEKWCvLduRbflWJ+Z4YMmRRSkiuqhdNECZvApUIhwJKIoDg/pxHvLClu7HyQlC/0i1hEDhpaU3FdDVctnSj+bzTzhC1wS+jg8eRMUhp/oe05jNKnOhI4D+cZEtfeUHDOHbdrS6TLr4o7eh32r2pITk+/rgBT5GIRl4On2A6MEelUYiBR0mKO8t1N941X0Zr3LdNnfeFtWQBpaCz1k+pLXW4yg7S03C/S1b2DGIghnE9SBXAObrE9jnzbZff4cAE2ypCOQxTowoprAbYO02+asdV6oOe0usMNQuu3J+eZfWpcWE0bSJ28Fxg580rHqY+Pcy8Mb1NBdJBhzGP4w/wosoDDrJIp9O8aySb9azv99BsKYmWwtyjefu/AHnWQRmC8O/rP2d1ZlbLU7etxFt1+JQLpvHzoifSfnfzxvvY26TCCytX9H+bjZO6Ha8C1J31R4bhzBU8wOt6wZ5CTliGaAGCObkquThfvhKG+GVa8W6PTvjhjeJncYqWbeP4yfQB3Ca3s0u6TSa2ZZ8C1NVnQ8NV2xTc4r0pl2KCaimDy5M/PolwHVlOvbk3a7WKtwK/igmGJFaCdqmzRfS/bDvJNvgV+neo/DqdX55BxgthxbgtgQLSpcGGCvBLuUFNbiRcvd5FYwYEEhEFPxEMlkYFvKUIPvsb+5QBhYESNjtl0DX95K2vm0NIby2qKX7V5J+r6scDYCit/AZo4D7XD5AL49ZikWk1EwsFwMkLLvvDCOUmR5hJY4g8MIYKMaqP0OWJdeByj1+yHu/WmS4bncOmzM+6q177y9Uq1v/G1TC7uI6fOOe01WGE437DcTs7yxUXiMpEUIp7XQhC2vgZcYEGl0USfTIWAT3s+my2Bi+2+p2axiWSTngQYCKYPb4epP3jUpw2Q04rLaneNq9IRuLuNjuuwVlazo/3ZmdB9J7JVyMMY2sUWBpTpID9fIF8pkWBefYGrhhRjHj4SkhVLgD2f64ZMNAQxtQggSt7o3k9PUbcswGUItnrACESfByuwNCIthZglnN9aAK9YYfXN6U3/5pHqO34rTsuZP/SgH3tDJRIDFrda5Gf+q6e/FYEQAl8oEiOQz1uGHIWdkauLcfgt+t87y5ZpRFUlVh3xZxz7TdqO1NSiKoWNxzEm6oWS5DOYJ0AWHILeE3zMd5oAyeCYeztZRSWHClue6XXFmqEkVsn6qVczwm94AmTlicRb95aLAycp1ggIhZ6Wx3BdugHkHAXxuR94V6XwMPR0DX2+WumKGCdqBTTW3cw37k9ESmrnWqytFELG9zCoK481kTqnE4Tzat7DkBYpmPqRIT8QhKR2zjIG3xlizpJPdNLjzfJi4FFXkJfId2a5zSYlb+5MI0giB+M3FFXmcuIcwIPBqWvFasT5TblMod5ufzCr6cFNBmdTHuFnmaFAgUWG0BKCqwokJQLVPDcDUdgdqx+vWSfWkP2Xgrq6hP3wKjrXteUMTO7PJRPo2faWed9L7nXsgWsDq/AW9pcD4gHWulZyu6iusGhqcSbeXS2UL1toGTH6FgTcm74OpfgTz0QYpCjQwH9beDfl5NmUwEr5ygzvrS+OFx3mk4P7PMGQmyxkz28/cWZH0pYS4/Hlpon0A9PXdqpqwTzzdEludGdQv6Xqr72e9lO6UkXvrdDwRh3OHjJ59lAZNVCHh9BRvyuEH1AZc08HFLFYPLDJtSFUsVB7qeKFsUSqnxlFBv3r/MAuYMxeLdonL9gNTeTSwMkxch1iDXDyW55B63/uvQp/yGvpgicDbfGxZWdsg==
Previous Lesson Next Lesson