We’re going to continue with the code we wrote in the previous lab. That C# application set up an ML.NET pipeline to load the New York TLC dataset and clean up the data using several feature engineering techniques.
So all we need to do is append a few command to the end of the pipeline to train and evaluate a regression model on the data.
...
9Ia2zhyEWuqfChcoOOlb9JYb5m5/yuswnclysLFRvGSjN3U6QAJRrIuqbTwxOn5PzhtPQCs2kffyM0ZC99j4o2oDGNZNdaknBSbTTL/uHAoWzdJIooqo5o9cc3/tueWhYAsju5x2gLOckhJam/IEUZQYnQgsqzZVhYsGj73pCcsji8QmA8S3rhfx+d5asWLfnsXqiak1KoBEHmOxxA9H6z6/7XgvO+wXLtpwBmRAfYqg/ccg9HDwGqSwnljEXslPB6h/QK/bdmxGFm1ot3dFeAWr0/4I222E1zS+/y/B6WzY+nXuJijfQoYL7uTwdaUojYfOL02zkr+y0SdL0uwpJ8zhdyiZNrH3DMEvoltzInn1NhdDaoqxILvmg+R5VTMaibsXNz3dCGm11LwexyoP/mEfYgTb35Sz3/RWxiNWZc/fYrOzfUnTodLGpvKfQN9GJ1n4Er3qoFgdU6NFk2nmd5yMH+HOtDrvb03BFSFFy8lYDRqO5qBg0v79lJJVuXEDUtAXqEsnlP2hPYdqh5QvZf6Ku2StHCTGgmSG8pyD5xKwqbi5Kk/im8PW+iLceYjzHgHgtgzya/g/8JO5eKMi2s/of+Besmg1OKZX0Tl6kFa3Y6fU+VTNdf/UVd/svSViHwxLNnpz0UuaqNQwMiiYm730I+jGMlf5dRJeCC3fcbFiwPqTHDInDT18Uc/uP3CY1Jbx3LBUN7FKLNlyhNqXv053Ztpva5xtgNH6u+Q2V4q/5P1dIZIqNl5ARIcU9B7PHCU8pQNFwR/2rSQFwfl8RED0gqk8EjQlwxmSMR/rHHzFC6wJ5NqEV4NK8i7LWUctv/BxmZqNkvWxp6BNL43Tv8SrnLy+dfr92gIXIa7dJdp34TnCJ6/bPSTqQwHDEWzqqzBCHQrGpuieF0VG/Q8v1G9pNZ87UIXKGdxuTefyYvpODNBA10RBl0kS3q5L7qGbfaqzYJcfPnYV95cZBGB7vnqTbiKgv7osJJBNcJJreKSAxBUhk+6h59GOHtcWUBAQSyHmjoMMwVqNnHubR70/gbTmAIWWyaqDeTjltlj/RXWWJA6wOzsTsCqnvUueh+RICFNvMxqRFzStcZdOc3flZmYbmCx2TwVOyln3dOjwRLJ2SOhg16dk22ci+7SvH3eLYB4ogQZi4Nzo0RzdvAfv03HVn+yadM4QvivnwhMnYhJ5JYX4OxdYrEuhpHrHKlaqhqAQTN1z0ynD5elB0hxwpem6V/BOxGeIqCyG3+yvS6cO6dcEQFzrGQlAETFDYt8PDljIWyHBrs83QerE1h24hl0pKZQIG5kTNxbe+zzOz1JCh2PI+rMEqOydtVQkYoEugdkYbvsigu/mq/ToAc/4Fut50Q1RTg49rxpN55XbddLL74D3U6JYjTKs/BfWxFtwgtYi3sGNS6lJoLQfhupP/Wn8nvfyAVtnET7HgNbvLjuwKlmoJhHSQJ5U84lvvUV5zTJocV6GlpN6QUrq5jrXj4TTlXigfVIFpTdGHNGMyNbJ0lfrcVpznKrKqT9CgPy6WoGVhz7LXBBFTNYjcLIumLbl7MoWOgVLoZEErTGnNsQw+9Deb0JjUPwcx8wxuVNJ3uhgr2kF130n5KJW4G19HCsDjc7/lbj8nhb4tBCvxwlMV6MTJGd9F/S7N5LHWsp2NQIq9aNDvYfK/A6ctWTTSWIYntuflj2N56+5oYq+4CMknBBe1knmmXCDIUWLAIShwxGJsbTVIa5jkb7PGvjy32AeWUaPq/RDalINKEuSc91qgJr1Xmpr/I6bTxtRJm97gJojuMaisIbXHWBv45W4RXiSzKuQ2AspCkzkoRifwqWBFBje8dTxVuAAZJhMakuneXl86ppTtovFSo5kMlSTxHqgiKlUJDhN3EoOMAgthnmGwDfLgtuqu5ZLqQ9yO1dS9veZaHqdsq5nlTXGPNqnLcvseJwEg4AnIM0hB637F/cAw4NTEp4tzRFhlQnFRVxWilfaNgIUjSdZyvBmnGhaWtjTpCM/T6y05LsddyBoqUWhjEhmzb+ZhphpX8ZSZ2hYwlIHUgMgyMwT0AZ7NkmzHMntltHC53OOhmHrhtJWxNjUfHcSMbQqXz4UuJ2d+sx9AZthA0xxVawvH5nMLYCupj8DSb55yh5sIoJnN7E3XJMdxW+FVcaX2BokRF8UOZUMu6SrqHdRVlLuEBcxfb4qNZrNxbSKut+4M9ZfLJJ6fUvdT8IdDV3u9lyMGCwHqweQcXZvUa9V1wrDM5zG//WIUH44ZBtKw/K/NX3x4jJQMh5JJXwOK74W/pN1GbHMqchS64dbp0w2Xbq45jdO9RRTHMx6mq04oNqORuwc+PfQG6E25xgeiCcIGddFqkKRhNWpZr3w5gk5QgGPU3uTwgzA3NwNSI1QGXe6YnvLF0KLtXn5t2rOZZAgF462I2MTPKLQKWrqQRP9vzbxtV0E5ofCe8GVQMUXRCNRk024/ncX9bpdxdpx5WNQojpSxcBV7DI5jhEuFku0IDxcq4jAAblzRTnGFNPE47hW+O7lWJC43sr+TGs/UaAfIlFpTZm2SCdfxwt7+TkmmAGFHbVYx9xFFKDQyTh/xNK9XGuA9EuaLCmA717/bVjvE8wENQ+3gj8pXoxVFTalamOqTym+81WuKeZJmZL8TonC83Iv4SPVoIEVQu8KLpyobT3utX0sEbZ234cVXpNolUKsv3z9Dk+zECxUcnjC5jXvBHjBuhY+/sNjkAApSMXJZU1P71PJU4cvG3gnwcFCg7d0kASbpHWmM40/dUvdV52xO62b0iBZwdx23hcosIoOsf1FpNWPEyOvMtyrvfNi6cCwC35y5jsS7rSsWuBPPrhOreKrOQlufPL0QBMfdgevn3hohRQjoRGwBT8KHsNnANF9w595I0d0qbd+9djI48GgEMvm7JHsNBWrFV5g/L8XExSJF6phfnOB4ptqzZkZyfqC+VxzCy/hLBlmmSHVUrXEs5ttmH+F3gKGbeq8Uk+rox0u105j8rfz7kFO6Na4aLVNKYeyaPT1K2Ofdla9hLM/XjIbjGsvnO1SiHQ+0bWpPqDW955XM0/FsGkTws3s+3W+Q41nA7uc/1F7x5clFK5hU9uaRtYQGKT6PDcJvnSV3MZiSfm3IKYZPHhcghTvTMib3cKSC4nzQ6DsyVPihLozyUE/dwW89+MWEtwypBKkQy82/HHUVm+9BZ2sI94uIePLPH/MnEUObNddmdx1/WihLGjyQKjtB1XIG8XUT3xPDFhkHgE7YsJHK3UNPUdlC6QAHGsF+cLJmYi4T3cjEpK7V3XsXtczpMf2dU5U9SFdR7hc+mo84TGuSR86D4Hduw0P+sNJDR2Gp2JAebBzfyPKDD8sfH9iGHjgHN9SsRm6i/RarHRoX7J19aALheVa+BzRyB9hNhY0o/o4TPpCvdwLCfdh3M/bDYcaZXPWf77fue2EV5gHTyYVOfvm1g7gw6vzADDnqH7laLzFTxChMxFc7Se58VtAe6GCr5W1LmdG2C+fhCzs8s/pDinM45w3ze1HScu3z2nRa5dZNimBuwUiS8IAGvgEFuwJLXsMPTM3vGJE3/RGlY0DU97JTGDojWIb1t54wgxtl4o+ei9+0avLhvhbcuEltcb2qcZ8jqIqJDsCnFNVqDpKfo+sSBWJ56Kv3f5uDLHizcxaje+UPGt93JLgAbOZO/XkG6AxhiXGOpzwzfzZABNRnnrI3HRMDp4YefFIchT2uWrQ2eSDRS/wxeRWpt3K8/HFboFq9RSzmiiSTZkp/kENhHDC78AfEwXbVn65ST/cdwPWVjnsAzkMR1QN2SKejoaHx6uLVpF0A1DzcMRb87t+CbmxpABCM4YdiUItCCvnDIw5QeUxeJ9Wkf8mhX7xlQO2AwdYvMRcPcZG69spKCzb5k2Qu6BNS+xCjaH1tO8iIZbNMvx8JcXKYwk1h+r72Fj3pWEUPpbYQ8Iphf0hN8aeTJVo5cmL1ngvg6QCOb7uhLFv0t8XDpUrMAGyKYnN5RB1lkGVwh/xTr1cZdlTlWPk9fB7Ikn0hLgK1NNLcztzYv7bDgEiLOePmYRqAJSkzwFGEUFMF66Y5DZZJTV3XA+XPicWNC7MBcknHh0/SYxiFRBPpVIgp1OjqKMqW5XFkx053Og98BRBQU2UYLOndfFQGy6h1ulQRbIJoNZcL/oKwrJ1Q88EMCA8wmXRrtfUrdEHLCF939HNHBRW3YV0bEwZMzXVB+dJ27ZtN1FM9g/CO5NXcakV8FRw0AKBieMuPOefDpFs1X+XieHLLOOn1bJye/Di4J5SeWvjYpwrl1DsMQz81FDke9wsWZ1Kydee2mnZh6wUALaoQ8Zxj15WDbej33Tq2dUkDKfwctbHL8Z+KlosZaevrd3nMSOx5YOhzZoIWF87wYJ1kowGisjSYiQclYi6rtwPh8me5jK/Zt9MIA==